Matching Items (2,518)
Filtering by

Clear all filters

152386-Thumbnail Image.png
Description
In this dissertation, combined photo-induced and thermionic electron emission from low work function diamond films is studied through low energy electron spectroscopy analysis and other associated techniques. Nitrogen-doped, hydrogen-terminated diamond films prepared by the microwave plasma chemical vapor deposition method have been the most focused material. The theme of this

In this dissertation, combined photo-induced and thermionic electron emission from low work function diamond films is studied through low energy electron spectroscopy analysis and other associated techniques. Nitrogen-doped, hydrogen-terminated diamond films prepared by the microwave plasma chemical vapor deposition method have been the most focused material. The theme of this research is represented by four interrelated issues. (1) An in-depth study describes combined photo-induced and thermionic emission from nitrogen-doped diamond films on molybdenum substrates, which were illuminated with visible light photons, and the electron emission spectra were recorded as a function of temperature. The diamond films displayed significant emissivity with a low work function of ~ 1.5 eV. The results indicate that these diamond emitters can be applied in combined solar and thermal energy conversion. (2) The nitrogen-doped diamond was further investigated to understand the physical mechanism and material-related properties that enable the combined electron emission. Through analysis of the spectroscopy, optical absorbance and photoelectron microscopy results from sample sets prepared with different configurations, it was deduced that the photo-induced electron generation involves both the ultra-nanocrystalline diamond and the interface between the diamond film and metal substrate. (3) Based on results from the first two studies, possible photon-enhanced thermionic emission was examined from nitrogen-doped diamond films deposited on silicon substrates, which could provide the basis for a novel approach for concentrated solar energy conversion. A significant increase of emission intensity was observed at elevated temperatures, which was analyzed using computer-based modeling and a combination of different emission mechanisms. (4) In addition, the electronic structure of vanadium-oxide-terminated diamond surfaces was studied through in-situ photoemission spectroscopy. Thin layers of vanadium were deposited on oxygen-terminated diamond surfaces which led to oxide formation. After thermal annealing, a negative electron affinity was found on boron-doped diamond, while a positive electron affinity was found on nitrogen-doped diamond. A model based on the barrier at the diamond-oxide interface was employed to analyze the results. Based on results of this dissertation, applications of diamond-based energy conversion devices for combined solar- and thermal energy conversion are proposed.
ContributorsSun, Tianyin (Author) / Nemanich, Robert (Thesis advisor) / Ponce, Fernando (Committee member) / Peng, Xihong (Committee member) / Spence, John (Committee member) / Treacy, Michael (Committee member) / Arizona State University (Publisher)
Created2013
150291-Thumbnail Image.png
Description
Group III-nitride semiconductors have attracted much attention for applications on high brightness light-emitting diodes (LEDs) and laser diodes (LDs) operating in the visible and ultra-violet spectral range using indium gallium nitride in the active layer. However, the device efficiency in the green to red range is limited by quantum-confined Stark

Group III-nitride semiconductors have attracted much attention for applications on high brightness light-emitting diodes (LEDs) and laser diodes (LDs) operating in the visible and ultra-violet spectral range using indium gallium nitride in the active layer. However, the device efficiency in the green to red range is limited by quantum-confined Stark effects resulting from the lattice mismatch between GaN and InGaN. In this dissertation, the optical and micro-structural properties of GaN-based light emitting structures have been analyzed and correlated by utilizing cathodoluminescence and transmission electron microscopy techniques. In the first section, optimization of the design of GaN-based lasers diode structures is presented. The thermal strain present in the GaN underlayer grown on sapphire substrates causes a strain-induced wavelength shift. The insertion of an InGaN waveguide mitigates the mismatch strain at the interface between the InGaN quantum well and the GaN quantum barrier. The second section of the thesis presents a study of the characteristics of thick non-polar m-plane InGaN films and of LED structures containing InGaN quantum wells, which minimize polarization-related electric fields. It is found that in some cases the in-plane piezoelectric fields can still occur due to the existence of misfit dislocations which break the continuity of the film. In the final section, the optical and structural properties of InGaAlN quaternary alloys are analyzed and correlated. The composition of the components of the film is accurately determined by Rutherford backscattering spectroscopy.
ContributorsHuang, Yu (Author) / Ponce, Fernando A. (Thesis advisor) / Tsen, Kong-Thon (Committee member) / Treacy, Michael (Committee member) / Drucker, Jeffery (Committee member) / Culbertson, Robert (Committee member) / Arizona State University (Publisher)
Created2011
150307-Thumbnail Image.png
Description
The chemical sensitivity and spatial resolution of Raman spectroscopy, combined with the sensitivity of modern systems that can easily detect single atomic layers, have made this technique a preferred choice for the strain characterization of complex systems such as nanoscale complementary metal-oxide-semiconductor - CMOS - devices. A disadvantage of Raman

The chemical sensitivity and spatial resolution of Raman spectroscopy, combined with the sensitivity of modern systems that can easily detect single atomic layers, have made this technique a preferred choice for the strain characterization of complex systems such as nanoscale complementary metal-oxide-semiconductor - CMOS - devices. A disadvantage of Raman spectroscopy, however, is that the shifts associated with strain are not related to the geometrical deformations in any obvious way, so that careful calibrations are needed to determine the anharmonic coefficients (p, q and r) that relate strain to Raman shifts. A new set of measurements of the Raman shift in strained Ge films grown on relaxed SiGe buffer layers deposited on Si substrates is presented, and thereby, a new consistent set of values for the parameters p and q for Ge has been proposed. In this dissertation the study of the vibrational properties of Ge1-xSnx alloys has also been reported. The temperature dependence of the Raman spectrum of Ge-rich Ge1-x Snx and Ge1-x-ySi xSny alloys has been determined in the 10 K - 450 K range. The Raman line shift and width changes as a function of temperature are found to be virtually identical to those observed in bulk Ge. This result shows that the anharmonic decay process responsible for the temperature dependence is extremely robust against the alloy perturbation.
ContributorsBagchi, Sampriti (Author) / Menéndez, Jose (Thesis advisor) / Treacy, Michael (Committee member) / Ponce, Fernando (Committee member) / Tsen, Kong-Thon (Committee member) / Rez, Peter (Committee member) / Arizona State University (Publisher)
Created2011
150275-Thumbnail Image.png
Description
ABSTRACT Group III-nitride semiconductor materials have been commercially used in fabrication of light-emitting diodes (LEDs) and laser diodes (LDs) covering the spectral range from UV to visible and infrared, and exhibit unique properties suitable for modern optoelectronic applications. Great advances have recently happened in the research and development in high-power

ABSTRACT Group III-nitride semiconductor materials have been commercially used in fabrication of light-emitting diodes (LEDs) and laser diodes (LDs) covering the spectral range from UV to visible and infrared, and exhibit unique properties suitable for modern optoelectronic applications. Great advances have recently happened in the research and development in high-power and high-efficiency blue-green-white LEDs, blue LDs and other optoelectronic applications. However, there are still many unsolved challenges with these materials. In this dissertation, several issues concerning structural, electronic and optical properties of III-nitrides have been investigated using a combination of transmission electron microscopy (TEM), electron holography (EH) and cathodoluminescence (CL) techniques. First, a trend of indium chemical inhomogeneity has been found as the indium composition increases for the InGaN epitaxial layers grown by hydride vapor phase epitaxy. Second, different mechanisms contributing to the strain relaxation have been studied for non-polar InGaN epitaxial layers grown on zinc oxide (ZnO) substrate. Third, various structural morphologies of non-polar InGaN epitaxial layers grown on free-standing GaN substrate have been investigated. Fourth, the effect of the growth temperature on the performance of GaN lattice-matched InAlN electron blocking layers has been studied. Finally, the electronic and optical properties of GaN nanowires containing a AlN/GaN superlattice structure have been investigated showing relatively small internal electric field and superlattice- and defect-related emissions along the nanowires.
ContributorsSun, Kewei (Author) / Ponce, Fernando (Thesis advisor) / Smith, David (Committee member) / Treacy, Michael (Committee member) / Drucker, Jeffery (Committee member) / Schmidt, Kevin (Committee member) / Arizona State University (Publisher)
Created2011
133352-Thumbnail Image.png
Description
The inherent risk in testing drugs has been hotly debated since the government first started regulating the drug industry in the early 1900s. Who can assume the risks associated with trying new pharmaceuticals is unclear when looked at through society's lens. In the mid twentieth century, the US Food and

The inherent risk in testing drugs has been hotly debated since the government first started regulating the drug industry in the early 1900s. Who can assume the risks associated with trying new pharmaceuticals is unclear when looked at through society's lens. In the mid twentieth century, the US Food and Drug Administration (FDA) published several guidance documents encouraging researchers to exclude women from early clinical drug research. The motivation to publish those documents and the subsequent guidance documents in which the FDA and other regulatory offices established their standpoints on women in drug research may have been connected to current events at the time. The problem of whether women should be involved in drug research is a question of who can assume risk and who is responsible for disseminating what specific kinds of information. The problem tends to be framed as one that juxtaposes the health of women and fetuses and sets their health as in opposition. That opposition, coupled with the inherent uncertainty in testing drugs, provides for a complex set of issues surrounding consent and access to information.
ContributorsMeek, Caroline Jane (Author) / Maienschein, Jane (Thesis director) / Brian, Jennifer (Committee member) / School of Life Sciences (Contributor) / Sanford School of Social and Family Dynamics (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
131502-Thumbnail Image.png
Description
Social-emotional learning (SEL) methods are beginning to receive global attention in primary school education, yet the dominant emphasis on implementing these curricula is in high-income, urbanized areas. Consequently, the unique features of developing and integrating such methods in middle- or low-income rural areas are unclear. Past studies suggest that students

Social-emotional learning (SEL) methods are beginning to receive global attention in primary school education, yet the dominant emphasis on implementing these curricula is in high-income, urbanized areas. Consequently, the unique features of developing and integrating such methods in middle- or low-income rural areas are unclear. Past studies suggest that students exposed to SEL programs show an increase in academic performance, improved ability to cope with stress, and better attitudes about themselves, others, and school, but these curricula are designed with an urban focus. The purpose of this study was to conduct a needs-based analysis to investigate components specific to a SEL curriculum contextualized to rural primary schools. A promising organization committed to rural educational development is Barefoot College, located in Tilonia, Rajasthan, India. In partnership with Barefoot, we designed an ethnographic study to identify and describe what teachers and school leaders consider the highest needs related to their students' social and emotional education. To do so, we interviewed 14 teachers and school leaders individually or in a focus group to explore their present understanding of “social-emotional learning” and the perception of their students’ social and emotional intelligence. Analysis of this data uncovered common themes among classroom behaviors and prevalent opportunities to address social and emotional well-being among students. These themes translated into the three overarching topics and eight sub-topics explored throughout the curriculum, and these opportunities guided the creation of the 21 modules within it. Through a design-based research methodology, we developed a 40-hour curriculum by implementing its various modules within seven Barefoot classrooms alongside continuous reiteration based on teacher feedback and participant observation. Through this process, we found that student engagement increased during contextualized SEL lessons as opposed to traditional methods. In addition, we found that teachers and students preferred and performed better with an activities-based approach. These findings suggest that rural educators must employ particular teaching strategies when addressing SEL, including localized content and an experiential-learning approach. Teachers reported that as their approach to SEL shifted, they began to unlock the potential to build self-aware, globally-minded students. This study concludes that social and emotional education cannot be treated in a generalized manner, as curriculum development is central to the teaching-learning process.
ContributorsBucker, Delaney Sue (Author) / Carrese, Susan (Thesis director) / Barab, Sasha (Committee member) / School of Life Sciences (Contributor, Contributor) / School of Civic & Economic Thought and Leadership (Contributor) / School of International Letters and Cultures (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
131507-Thumbnail Image.png
Description
As of 2019, 30 US states have adopted abortion-specific informed consent laws that require state health departments to develop and disseminate written informational materials to patients seeking an abortion. Abortion is the only medical procedure for which states dictate the content of informed consent counseling. State abortion counseling materials have

As of 2019, 30 US states have adopted abortion-specific informed consent laws that require state health departments to develop and disseminate written informational materials to patients seeking an abortion. Abortion is the only medical procedure for which states dictate the content of informed consent counseling. State abortion counseling materials have been criticized for containing inaccurate and misleading information, but overall, informed consent laws for abortion do not often receive national attention. The objective of this project was to determine the importance of informed consent laws to achieving the larger goal of dismantling the right to abortion. I found that informed consent counseling materials in most states contain a full timeline of fetal development, along with information about the risks of abortion, the risks of childbirth, and alternatives to abortion. In addition, informed consent laws for abortion are based on model legislation called the “Women’s Right to Know Act” developed by Americans United for Life (AUL). AUL calls itself the legal architect of the pro-life movement and works to pass laws at the state level that incrementally restrict abortion access so that it gradually becomes more difficult to exercise the right to abortion established by Roe v. Wade. The “Women’s Right to Know Act” is part of a larger package of model legislation called the “Women’s Protection Project,” a cluster of laws that place restrictions on abortion providers, purportedly to protect women, but actually to decrease abortion access. “Women’s Right to Know” counseling laws do not directly deny access to abortion, but they do reinforce key ideas important to the anti-abortion movement, like the concept of fetal personhood, distrust in medical professionals, the belief that pregnant people cannot be fully autonomous individuals, and the belief that abortion is not an ordinary medical procedure and requires special government oversight. “Women’s Right to Know” laws use the language of informed consent and the purported goal of protecting women to legitimize those ideas, and in doing so, they significantly undermine the right to abortion. The threat to abortion rights posed by laws like the “Women’s Right to Know” laws indicates the need to reevaluate and strengthen our ethical defense of the right to abortion.
ContributorsVenkatraman, Richa (Author) / Maienschein, Jane (Thesis director) / Brian, Jennifer (Thesis director) / Abboud, Carolina (Committee member) / Historical, Philosophical & Religious Studies (Contributor) / School of Life Sciences (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
131521-Thumbnail Image.png
Description
Turbidity is a known problem for UV water treatment systems as suspended particles can shield contaminants from the UV radiation. UV systems that utilize a reflective radiation chamber may be able to decrease the impact of turbidity on the efficacy of the system. The purpose of this study was to

Turbidity is a known problem for UV water treatment systems as suspended particles can shield contaminants from the UV radiation. UV systems that utilize a reflective radiation chamber may be able to decrease the impact of turbidity on the efficacy of the system. The purpose of this study was to determine how kaolin clay and gram flour turbidity affects inactivation of Escherichia coli (E. coli) when using a UV system with a reflective chamber. Both sources of turbidity were shown to reduce the inactivation of E. coli with increasing concentrations. Overall, it was shown that increasing kaolin clay turbidity had a consistent effect on reducing UV inactivation across UV doses. Log inactivation was reduced by 1.48 log for the low UV dose and it was reduced by at least 1.31 log for the low UV dose. Gram flour had a similar effect to the clay at the lower UV dose, reducing log inactivation by 1.58 log. At the high UV dose, there was no change in UV inactivation with an increase in turbidity. In conclusion, turbidity has a significant impact on the efficacy of UV disinfection. Therefore, removing turbidity from water is an essential process to enhance UV efficiency for the disinfection of microbial pathogens.
ContributorsMalladi, Rohith (Author) / Abbaszadegan, Morteza (Thesis director) / Alum, Absar (Committee member) / Fox, Peter (Committee member) / School of Human Evolution & Social Change (Contributor) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
131526-Thumbnail Image.png
Description
Aquatic macroinvertebrates are important for many ecological processes within river ecosystems and, as a result, their abundance and diversity are considered indicators of water quality and ecosystem health. Macroinvertebrates can be classified into functional feeding groups (FFG) based on morphological-behavioral adaptations. FFG ratios can shift due to changes

Aquatic macroinvertebrates are important for many ecological processes within river ecosystems and, as a result, their abundance and diversity are considered indicators of water quality and ecosystem health. Macroinvertebrates can be classified into functional feeding groups (FFG) based on morphological-behavioral adaptations. FFG ratios can shift due to changes in normal disturbance patterns, such as changes in precipitation, and from human impact. Due to their increased sensitivity to environmental changes, it has become more important to protect and monitor aquatic and riparian communities in arid regions as climate change continues to intensify. Therefore, the diversity and richness of macroinvertebrate FFGs before and after monsoon and winter storm seasons were analyzed to determine the effect of flow-related disturbances. Ecosystem size was also considered, as watershed area has been shown to affect macroinvertebrate diversity. There was no strong support for flow-related disturbance or ecosystem size on macroinvertebrate diversity and richness. This may indicate a need to explore other parameters of macroinvertebrate community assembly. Establishing how disturbance affects aquatic macroinvertebrate communities will provide a key understanding as to what the stream communities will look like in the future, as anthropogenic impacts continue to affect more vulnerable ecosystems.
ContributorsSainz, Ruby (Author) / Sabo, John (Thesis director) / Grimm, Nancy (Committee member) / Lupoli, Christina (Committee member) / School of Life Sciences (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
131531-Thumbnail Image.png
Description
This study evaluates medical pluralism among 1.5 generation Indian American immigrants. 1.5 generation Indian Americans (N=16) were surveyed regarding their engagement in complementary and alternative medical systems (CAM), how immigration affected that, and reasons for and for not continuing the use of CAM. Results indicated most 1.5 Indian immigrants currently

This study evaluates medical pluralism among 1.5 generation Indian American immigrants. 1.5 generation Indian Americans (N=16) were surveyed regarding their engagement in complementary and alternative medical systems (CAM), how immigration affected that, and reasons for and for not continuing the use of CAM. Results indicated most 1.5 Indian immigrants currently engage in CAM, given that their parents also engage in CAM. The top reasons respondents indicated continued engagement in CAM was that it has no side effects and is preventative. Reasons for not practicing CAM included feeling out of place, not living with parents or not believing in CAM. After immigration, most participants decreased or stopped their engagement in CAM. More women than men continued to practice CAM after immigration. From the results, it was concluded that CAM is still important to 1.5 generation Indian immigrants.
ContributorsMurugesh, Subhiksha (Author) / Stotts, Rhian (Thesis director) / Mubayi, Anuj (Committee member) / School of Human Evolution & Social Change (Contributor) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05