Matching Items (2,031)
Filtering by

Clear all filters

128206-Thumbnail Image.png
Description

People generate massive volumes of data on the Internet about cities. Researchers may engage these crowds to fill data gaps and better understand and inform planning decisions. Crowdsourced tools for data collection must be supported by outreach; however, researchers typically have limited experience with marketing and promotion. Our goal is

People generate massive volumes of data on the Internet about cities. Researchers may engage these crowds to fill data gaps and better understand and inform planning decisions. Crowdsourced tools for data collection must be supported by outreach; however, researchers typically have limited experience with marketing and promotion. Our goal is to provide guidance on effective promotion strategies. We evaluated promotion efforts for BikeMaps.org, a crowdsourced tool for cycling collisions, near misses, hazards, and thefts. We analyzed website use (sessions) and incidents reported, and how they related to promotion medium (social, traditional news, or in-person), intended audience (cyclists or general), and community context (cycling mode share, cycling facilities, and a survey in the broader community). We compared four Canadian cities, three with active promotion, and one without, over eight months. High-use events were identified in time periods with above average web sessions. We found that promotion was essential for use of the project. Targeting cycling specific audiences resulted in more data submitted, while targeting general audiences resulted in greater age and gender diversity. We encourage researchers to use tools to monitor and adapt to promotion medium, audience, and community context. Strategic promotion may help achieve more diverse representation in crowdsourced data.

ContributorsFerster, Colin (Author) / Nelson, Trisalyn (Author) / Laberee, Karen (Author) / Vanlaar, Ward (Author) / Winters, Meghan (Author) / College of Liberal Arts and Sciences (Contributor)
Created2017-06-21
128198-Thumbnail Image.png
Description

Climate change is one of the most salient challenges to society, both today and in the near future. Considering the complexity, uncertainties, and scale of possible global climate change (GCC) impacts, there is agreement that urban planning has the capacity to facilitate the development and implementation of adaptation as well

Climate change is one of the most salient challenges to society, both today and in the near future. Considering the complexity, uncertainties, and scale of possible global climate change (GCC) impacts, there is agreement that urban planning has the capacity to facilitate the development and implementation of adaptation as well as mitigation strategies. The land use planning system provides a framework to reduce greenhouse gas emissions considerably by addressing central issues such as community design, transportation networks and use, and increasing development density. Planning can also play an important role in impacting public behavior, thus slowing the pace of GCC and allowing the development and implementation of adaptation measurements. The purpose of this article is to examine the important role of the planning profession in developing and successfully implementing mitigation and adaptation strategies. There is a growing sense that planning will receive increasing attention as an important policy instrument for addressing both the causes and impacts of climate change. This work also supports the argument that climate action plans can be a vital instrument in confronting the challenges of climate change and that planners need to be more involved in the development and implementation process of such plans.

ContributorsHagen, Bjoern (Author) / College of Liberal Arts and Sciences (Contributor)
Created2016-09-09
128197-Thumbnail Image.png
Description

Bed load transport over ripples and dunes in rivers exhibits strong spatial and temporal variability due to the complex turbulence field caused by flow separation at bedform crests. A turbulence-resolving flow model downstream of a backward-facing step, coupled with a model integrating the equations of motion of individual sand grains,

Bed load transport over ripples and dunes in rivers exhibits strong spatial and temporal variability due to the complex turbulence field caused by flow separation at bedform crests. A turbulence-resolving flow model downstream of a backward-facing step, coupled with a model integrating the equations of motion of individual sand grains, is used to investigate the physical interaction between bed load motion and turbulence downstream of separated flow. Large bed load transport events are found to correspond to low-frequency positive pressure fluctuations. Episodic penetration of fluid into the bed increases the bed stress and moves grains. Fluid penetration events are larger in magnitude near the point of reattachment than farther downstream. Models of bed load transport over ripples and dunes must incorporate the effects of these penetration events of high stress and sediment flux.

ContributorsSchmeeckle, Mark (Author) / College of Liberal Arts and Sciences (Contributor)
Created2015-02-09
128195-Thumbnail Image.png
Description

This randomized prospective trial aimed to assess the feasibility and efficacy of a team-based worksite health and safety intervention for law enforcement personnel. Four-hundred and eight subjects were enrolled and half were randomized to meet for weekly, peer-led sessions delivered from a scripted team-based health and safety curriculum. Curriculum addressed:

This randomized prospective trial aimed to assess the feasibility and efficacy of a team-based worksite health and safety intervention for law enforcement personnel. Four-hundred and eight subjects were enrolled and half were randomized to meet for weekly, peer-led sessions delivered from a scripted team-based health and safety curriculum. Curriculum addressed: exercise, nutrition, stress, sleep, body weight, injury, and other unhealthy lifestyle behaviors such as smoking and heavy alcohol use. Health and safety questionnaires administered before and after the intervention found significant improvements for increased fruit and vegetable consumption, overall healthy eating, increased sleep quantity and sleep quality, and reduced personal stress.

ContributorsKuehl, Kerry S. (Author) / Elliot, Diane L. (Author) / Goldberg, Linn (Author) / MacKinnon, David (Author) / Vila, Bryan J. (Author) / Smith, Jennifer (Author) / Miocevic, Milica (Author) / O'Rourke, Holly (Author) / Valente, Matthew (Author) / DeFrancesco, Carol (Author) / Sleigh, Adriana (Author) / McGinnis, Wendy (Author) / College of Liberal Arts and Sciences (Contributor)
Created2014-05-08
128192-Thumbnail Image.png
Description

Recent advances in fossil fuel CO2 (FFCO2) emission inventories enable sensitivity tests of simulated atmospheric CO2 concentrations to sub-annual variations in FFCO2 emissions and what this implies for the interpretation of observed CO2. Six experiments are conducted to investigate the potential impact of three cycles of FFCO2 emission variability (diurnal,

Recent advances in fossil fuel CO2 (FFCO2) emission inventories enable sensitivity tests of simulated atmospheric CO2 concentrations to sub-annual variations in FFCO2 emissions and what this implies for the interpretation of observed CO2. Six experiments are conducted to investigate the potential impact of three cycles of FFCO2 emission variability (diurnal, weekly and monthly) using a global tracer transport model. Results show an annual FFCO2 rectification varying from −1.35 to +0.13 ppm from the combination of all three cycles. This rectification is driven by a large negative diurnal FFCO2 rectification due to the covariation of diurnal FFCO2 emissions and diurnal vertical mixing, as well as a smaller positive seasonal FFCO2 rectification driven by the covariation of monthly FFCO2 emissions and monthly atmospheric transport. The diurnal FFCO2 emissions are responsible for a diurnal FFCO2 concentration amplitude of up to 9.12 ppm at the grid cell scale. Similarly, the monthly FFCO2 emissions are responsible for a simulated seasonal CO2 amplitude of up to 6.11 ppm at the grid cell scale. The impact of the diurnal FFCO2 emissions, when only sampled in the local afternoon, is also important, causing an increase of +1.13 ppmv at the grid cell scale. The simulated CO2 concentration impacts from the diurnally and seasonally varying FFCO2 emissions are centered over large source regions in the Northern Hemisphere, extending to downwind regions. This study demonstrates the influence of sub-annual variations in FFCO2 emissions on simulated CO2 concentration and suggests that inversion studies must take account of these variations in the affected regions.

ContributorsZhang, Xia (Author) / Gurney, Kevin (Author) / Rayner, Peter (Author) / Baker, David (Author) / Liu, Yu-ping (Author) / College of Liberal Arts and Sciences (Contributor)
Created2016-02-19
128191-Thumbnail Image.png
Description

Sensorimotor mechanisms can unify explanations at cognitive, social, and cultural levels. As an example, we review how anticipated motor effort is used by individuals and groups to judge distance: the greater the anticipated effort the greater the perceived distance. Anticipated motor effort can also be used to understand cultural differences.

Sensorimotor mechanisms can unify explanations at cognitive, social, and cultural levels. As an example, we review how anticipated motor effort is used by individuals and groups to judge distance: the greater the anticipated effort the greater the perceived distance. Anticipated motor effort can also be used to understand cultural differences. People with interdependent self- construals interact almost exclusively with in-group members, and hence there is little opportunity to tune their sensorimotor systems for interaction with out-group members. The result is that interactions with out-group members are expected to be difficult and out-group members are perceived as literally more distant. In two experiments we show (a) interdependent Americans, compared to independent Americans, see American confederates (in-group) as closer; (b) interdependent Arabs, compared to independent Arabs, perceive Arab confederates (in- group) as closer, whereas interdependent Americans perceive Arab confederates (out-group) as farther. These results demonstrate how the same embodied mechanism can seamlessly contribute to explanations at the cognitive, social, and cultural levels.

ContributorsSoliman, Tamer (Author) / Gibson, Alison (Author) / Glenberg, Arthur (Author) / College of Liberal Arts and Sciences (Contributor)
Created2013-11-29
128190-Thumbnail Image.png
Description

We present a novel paradigm to identify shared and unique brain regions underlying non-semantic, non-phonological, abstract, audio-visual (AV) memory vs. naming using a longitudinal functional magnetic resonance imaging experiment. Participants were trained to associate novel AV stimulus pairs containing hidden linguistic content. Half of the stimulus pairs were distorted images

We present a novel paradigm to identify shared and unique brain regions underlying non-semantic, non-phonological, abstract, audio-visual (AV) memory vs. naming using a longitudinal functional magnetic resonance imaging experiment. Participants were trained to associate novel AV stimulus pairs containing hidden linguistic content. Half of the stimulus pairs were distorted images of animals and sine-wave speech versions of the animal's name. Images and sounds were distorted in such a way as to make their linguistic content easily recognizable only after being made aware of its existence. Memory for the pairings was tested by presenting an AV pair and asking participants to verify if the two stimuli formed a learned pairing. After memory testing, the hidden linguistic content was revealed and participants were tested again on their recollection of the pairings in this linguistically informed state. Once informed, the AV verification task could be performed by naming the picture. There was substantial overlap between the regions involved in recognition of non-linguistic sensory memory and naming, suggesting a strong relation between them. Contrasts between sessions identified left angular gyrus and middle temporal gyrus as key additional players in the naming network. Left inferior frontal regions participated in both naming and non-linguistic AV memory suggesting the region is responsible for AV memory independent of phonological content contrary to previous proposals. Functional connectivity between angular gyrus and left inferior frontal gyrus and left middle temporal gyrus increased when performing the AV task as naming. The results are consistent with the hypothesis that, at the spatial resolution of fMRI, the regions that facilitate non-linguistic AV associations are a subset of those that facilitate naming though reorganized into distinct networks.

ContributorsSmith, Jason F. (Author) / Braun, Allen R. (Author) / Alexander, Gene E. (Author) / Chen, Kewei (Author) / Horwitz, Barry (Author) / College of Liberal Arts and Sciences (Contributor)
Created2013-10-11
128189-Thumbnail Image.png
Description

Hardships that face transmigrants working in agriculture include the potential for drug use. Reliant on village-based networks that facilitate border crossing and developing a plan for a destination within this country, transmigrants who try new drugs/alcohol and/or continue on accustomed drugs/alcohol are facilitated in these endeavors through locally generated networks

Hardships that face transmigrants working in agriculture include the potential for drug use. Reliant on village-based networks that facilitate border crossing and developing a plan for a destination within this country, transmigrants who try new drugs/alcohol and/or continue on accustomed drugs/alcohol are facilitated in these endeavors through locally generated networks as alternative forms of access and support. Seven cases of undocumented men from Mexico are reviewed to show how use of illicit drugs is minimally affected by economic success and time in the United States, or village-based networks that first facilitated entry into this country. Prior conditions, especially childhood difficulties and search for socioeconomic autonomy, precipitate new and/or continuing drug use within the United States on this side of the border, where both forms of drug use are facilitated by locally generated networks.

ContributorsBletzer, Keith (Author) / College of Liberal Arts and Sciences (Contributor)
Created2017-02-28
128188-Thumbnail Image.png
Description

We assembled daily maximum and minimum temperature records for 31 stations throughout Iran over the period 1961-2010. As with many other areas of the world, we found that both the maximum and minimum temperatures were increasing overall with the minimum temperatures increasing twice as fast as the maximum temperatures. We

We assembled daily maximum and minimum temperature records for 31 stations throughout Iran over the period 1961-2010. As with many other areas of the world, we found that both the maximum and minimum temperatures were increasing overall with the minimum temperatures increasing twice as fast as the maximum temperatures. We gathered population data for the stations near the beginning and end of the temperature records and found in all seasons and for both the maximum and minimum temperatures the magnitude of population growth positively influenced the temperature trends. However, unlike so many other studies, we found the strongest population growth signal in the winter for the maximum temperatures. We found evidence that this winter-season population-temperature signal is related snow cover. Our results illustrate that any number of processes are involved in explaining trends in historical maximum and minimum temperature records.

Created2016-08-11
128187-Thumbnail Image.png
Description

Soil temperature (Ts) change is a key indicator of the dynamics of permafrost. On seasonal and interannual timescales, the variability of Ts determines the active-layer depth, which regulates hydrological soil properties and biogeochemical processes. On the multi-decadal scale, increasing Ts not only drives permafrost thaw/retreat but can also trigger and

Soil temperature (Ts) change is a key indicator of the dynamics of permafrost. On seasonal and interannual timescales, the variability of Ts determines the active-layer depth, which regulates hydrological soil properties and biogeochemical processes. On the multi-decadal scale, increasing Ts not only drives permafrost thaw/retreat but can also trigger and accelerate the decomposition of soil organic carbon. The magnitude of permafrost carbon feedbacks is thus closely linked to the rate of change of soil thermal regimes. In this study, we used nine process-based ecosystem models with permafrost processes, all forced by different observation-based climate forcing during the period 1960–2000, to characterize the warming rate of Ts in permafrost regions. There is a large spread of Ts trends at 20 cm depth across the models, with trend values ranging from 0.010 ± 0.003 to 0.031 ± 0.005 °C yr-1. Most models show smaller increase in Ts with increasing depth. Air temperature (Tsub>a) and longwave downward radiation (LWDR) are the main drivers of Ts trends, but their relative contributions differ amongst the models. Different trends of LWDR used in the forcing of models can explain 61 % of their differences in Ts trends, while trends of Ta only explain 5 % of the differences in Ts trends. Uncertain climate forcing contributes a larger uncertainty in Ts trends (0.021 ± 0.008 °C yr-1, mean ± standard deviation) than the uncertainty of model structure (0.012 ± 0.001 °C yr-1), diagnosed from the range of response between different models, normalized to the same forcing. In addition, the loss rate of near-surface permafrost area, defined as total area where the maximum seasonal active-layer thickness (ALT) is less than 3 m loss rate, is found to be significantly correlated with the magnitude of the trends of Ts at 1 m depth across the models (R = −0.85, P = 0.003), but not with the initial total near-surface permafrost area (R = −0.30, P = 0.438). The sensitivity of the total boreal near-surface permafrost area to Ts at 1 m is estimated to be of −2.80 ± 0.67 million km2°C-1. Finally, by using two long-term LWDR data sets and relationships between trends of LWDR and Ts across models, we infer an observation-constrained total boreal near-surface permafrost area decrease comprising between 39 ± 14  ×  103 and 75 ± 14  ×  103km2yr-1 from 1960 to 2000. This corresponds to 9–18 % degradation of the current permafrost area.

ContributorsPeng, S. (Author) / Ciais, P. (Author) / Krinner, G. (Author) / Wang, T. (Author) / Gouttevin, I. (Author) / McGuire, A. D. (Author) / Lawrence, D. (Author) / Burke, E. (Author) / Chen, X. (Author) / Decharme, B. (Author) / Koven, C. (Author) / MacDougall, A. (Author) / Rinke, A. (Author) / Saito, K. (Author) / Zhang, W. (Author) / Alkama, R. (Author) / Bohn, Theodore (Author) / Delire, C. (Author) / Hajima, T. (Author) / Ji, D. (Author) / Lettenmaier, D. P. (Author) / Miller, P. A. (Author) / Moore, J. C. (Author) / Smith, B. (Author) / Sueyoshi, T. (Author) / College of Liberal Arts and Sciences (Contributor)
Created2016-01-20