Matching Items (124)
Filtering by

Clear all filters

Description
Herbivores face various nutritional challenges in their life cycles, challenges that may become increasingly acute under ongoing environmental changes.
Here, focusing on calcium, phosphorus and nitrogen, we used nutritional geometry to analyse individual-based data on foraging and extraction efficiencies, and combined these with data on reproduction and migratory behaviour to understand

Herbivores face various nutritional challenges in their life cycles, challenges that may become increasingly acute under ongoing environmental changes.
Here, focusing on calcium, phosphorus and nitrogen, we used nutritional geometry to analyse individual-based data on foraging and extraction efficiencies, and combined these with data on reproduction and migratory behaviour to understand how a large herbivorous carnivore can complete its life cycle on a narrow and seemingly low quality bamboo diet.
Behavioural results showed that pandas during the year switched between four main food categories involving the leaves and shoots of two bamboo species available. Nutritional analysis suggests that these diet shifts are related to the concentrations and balances of calcium, phosphorus and nitrogen. Notably, successive shifts in range use and food type corresponded with a transition to higher concentrations and/or a more balanced intake of these multiple key constituents.
Our study suggests that pandas obligatorily synchronize their seasonal migration and reproduction with the disjunct nutritional phenologies of two bamboo species. This finding has potentially important implications for habitat conservation for this species and, more generally, draws attention to the need for understanding the nutritional basis of food selection in devising management plans for endangered species.
ContributorsNie, Yonggang (Author) / Zhang, Zejun (Author) / Raubenheimer, David (Author) / Elser, James (Author) / Wei, Wei (Author) / Wei, Fuwen (Author) / College of Liberal Arts and Sciences (Contributor) / School of Life Sciences (Contributor)
Created2015-01-01
130405-Thumbnail Image.png
Description

We present an analysis of the stellar populations of 102 visually selected early-type galaxies (ETGs) with spectroscopic redshifts (0.35 ≲ z ≲ 1.5) from observations in the Early Release Science program with the Wide Field Camera 3 (WFC3) on the Hubble Space Telescope (HST). We fit one- and two-component synthetic

We present an analysis of the stellar populations of 102 visually selected early-type galaxies (ETGs) with spectroscopic redshifts (0.35 ≲ z ≲ 1.5) from observations in the Early Release Science program with the Wide Field Camera 3 (WFC3) on the Hubble Space Telescope (HST). We fit one- and two-component synthetic stellar models to the ETGs UV-optical-near-IR spectral energy distributions and find that a large fraction (∼40%) are likely to have experienced a minor (fYC ≲ 10% of stellar mass) burst of recent (tYC ≲ 1 Gyr) star formation. The measured age and mass fraction of the young stellar populations do not strongly trend with measurements of galaxy morphology. We note that massive (M > 1010.5M☼) recent star-forming ETGs appear to have larger sizes. Furthermore, high-mass, quiescent ETGs identified with likely companions populate a distinct region in the size-mass parameter space, in comparison with the distribution of massive ETGs with evidence of recent star formation (RSF). We conclude that both mechanisms of quenching star formation in disk-like ETGs and (gas-rich, minor) merger activity contribute to the formation of young stars and the size-mass evolution of intermediate redshift ETGs. The number of ETGs for which we have both HST WFC3 panchromatic (especially UV) imaging and spectroscopically confirmed redshifts is relatively small, therefore, a conclusion about the relative roles of both of these mechanisms remains an open question.

ContributorsRutkowski, Michael J. (Author) / Jeong, Hyunjin (Author) / Cohen, Seth (Author) / Kaviraj, Sugata (Author) / Windhorst, Rogier (Author) / Ryan, Russell E. (Author) / Koekemoer, Anton (Author) / Yi, Sukyoung K. (Author) / Hathi, Nimish P. (Author) / Dopita, Michael A. (Author) / College of Liberal Arts and Sciences (Contributor) / School of Earth and Space Exploration (Contributor)
Created2014-12-01
130406-Thumbnail Image.png
Description
Titanium dioxide (TiO2) is widely used for photocatalysis and solar cell applications, and the electronic structure of bulk TiO2 is well understood. However, the surface structure of nanoparticulate TiO2, which has a key role in properties such as solubility and catalytic activity, still remains controversial. Detailed understanding of surface defect

Titanium dioxide (TiO2) is widely used for photocatalysis and solar cell applications, and the electronic structure of bulk TiO2 is well understood. However, the surface structure of nanoparticulate TiO2, which has a key role in properties such as solubility and catalytic activity, still remains controversial. Detailed understanding of surface defect structures may help explain reactivity and overall materials performance in a wide range of applications. In this work we address the solubility problem and surface defects control on TiO2 nanoparticles. We report the synthesis and characterization of ∼4 nm TiO2 anatase spherical nanoparticles that are soluble and stable in a wide range of organic solvents and water. By controlling the temperature during the synthesis, we are able to tailor the density of defect states on the surface of the TiO2 nanoparticles without affecting parameters such as size, shape, core crystallinity, and solubility. The morphology of both kinds of nanoparticles was determined by TEM. EPR experiments were used to characterize the surface defects, and transient absorption measurements demonstrate the influence of the TiO2 defect states on photoinduced electron transfer dynamics.
Created2014-11-13
130319-Thumbnail Image.png
Description

Serial femtosecond crystallography requires reliable and efficient delivery of fresh crystals across the beam of an X-ray free-electron laser over the course of an experiment. We introduce a double-flow focusing nozzle to meet this challenge, with significantly reduced sample consumption, while improving jet stability over previous generations of nozzles. We

Serial femtosecond crystallography requires reliable and efficient delivery of fresh crystals across the beam of an X-ray free-electron laser over the course of an experiment. We introduce a double-flow focusing nozzle to meet this challenge, with significantly reduced sample consumption, while improving jet stability over previous generations of nozzles. We demonstrate its use to determine the first room-temperature structure of RNA polymerase II at high resolution, revealing new structural details. Moreover, the double flow-focusing nozzles were successfully tested with three other protein samples and the first room temperature structure of an extradiol ring-cleaving dioxygenase was solved by utilizing the improved operation and characteristics of these devices.

ContributorsOberthuer, Dominik (Author) / Knoska, Juraj (Author) / Wiedorn, Max O. (Author) / Beyerlein, Kenneth R. (Author) / Bushnell, David A. (Author) / Kovaleva, Elena G. (Author) / Heymann, Michael (Author) / Gumprecht, Lars (Author) / Kirian, Richard (Author) / Barty, Anton (Author) / Mariani, Valerio (Author) / Tolstikova, Aleksandra (Author) / Adriano, Luigi (Author) / Awel, Salah (Author) / Barthelmess, Miriam (Author) / Dorner, Katerina (Author) / Xavier, P. Lourdu (Author) / Yefanov, Oleksandr (Author) / James, Daniel (Author) / Nelson, Garrett (Author) / Wang, Dingjie (Author) / Calvey, George (Author) / Chen, Yujie (Author) / Schmidt, Andrea (Author) / Szczepek, Michael (Author) / Frielingsdorf, Stefan (Author) / Lenz, Oliver (Author) / Snell, Edward (Author) / Robinson, Philip J. (Author) / Sarler, Bozidar (Author) / Belsak, Grega (Author) / Macek, Marjan (Author) / Wilde, Fabian (Author) / Aquila, Andrew (Author) / Boutet, Sebastien (Author) / Liang, Mengning (Author) / Hunter, Mark S. (Author) / Scheerer, Patrick (Author) / Lipscomb, John D. (Author) / Weierstall, Uwe (Author) / Kornberg, Roger D. (Author) / Spence, John (Author) / Pollack, Lois (Author) / Chapman, Henry N. (Author) / Bajt, Sasa (Author) / College of Liberal Arts and Sciences (Contributor) / Department of Physics (Contributor)
Created2017-03-16
130320-Thumbnail Image.png
Description

X-ray free-electron lasers provide novel opportunities to conduct single particle analysis on nanoscale particles. Coherent diffractive imaging experiments were performed at the Linac Coherent Light Source (LCLS), SLAC National Laboratory, exposing single inorganic core-shell nanoparticles to femtosecond hard-X-ray pulses. Each facetted nanoparticle consisted of a crystalline gold core and a

X-ray free-electron lasers provide novel opportunities to conduct single particle analysis on nanoscale particles. Coherent diffractive imaging experiments were performed at the Linac Coherent Light Source (LCLS), SLAC National Laboratory, exposing single inorganic core-shell nanoparticles to femtosecond hard-X-ray pulses. Each facetted nanoparticle consisted of a crystalline gold core and a differently shaped palladium shell. Scattered intensities were observed up to about 7 nm resolution. Analysis of the scattering patterns revealed the size distribution of the samples, which is consistent with that obtained from direct real-space imaging by electron microscopy. Scattering patterns resulting from single particles were selected and compiled into a dataset which can be valuable for algorithm developments in single particle scattering research.

ContributorsLi, Xuanxuan (Author) / Chiu, Chun-Ya (Author) / Wang, Hsiang-Ju (Author) / Kassemeyer, Stephan (Author) / Botha, Sabine (Author) / Shoeman, Robert L. (Author) / Lawrence, Robert (Author) / Kupitz, Christopher (Author) / Kirian, Richard (Author) / James, Daniel (Author) / Wang, Dingjie (Author) / Nelson, Garrett (Author) / Messerschmidt, Marc (Author) / Boutet, Sebastien (Author) / Williams, Garth J. (Author) / Hartman, Elisabeth (Author) / Jafarpour, Aliakbar (Author) / Foucar, Lutz M. (Author) / Barty, Anton (Author) / Chapman, Henry (Author) / Liang, Mengning (Author) / Menzel, Andreas (Author) / Wang, Fenglin (Author) / Basu, Shibom (Author) / Fromme, Raimund (Author) / Doak, R. Bruce (Author) / Fromme, Petra (Author) / Weierstall, Uwe (Author) / Huang, Michael H. (Author) / Spence, John (Author) / Schlichting, Ilme (Author) / Hogue, Brenda (Author) / Liu, Haiguang (Author) / ASU Biodesign Center Immunotherapy, Vaccines and Virotherapy (Contributor) / Biodesign Institute (Contributor) / Applied Structural Discovery (Contributor) / College of Liberal Arts and Sciences (Contributor) / School of Molecular Sciences (Contributor) / Department of Physics (Contributor) / School of Life Sciences (Contributor)
Created2017-04-11
130322-Thumbnail Image.png
Description

Single particle diffractive imaging data from Rice Dwarf Virus (RDV) were recorded using the Coherent X-ray Imaging (CXI) instrument at the Linac Coherent Light Source (LCLS). RDV was chosen as it is a well-characterized model system, useful for proof-of-principle experiments, system optimization and algorithm development. RDV, an icosahedral virus of

Single particle diffractive imaging data from Rice Dwarf Virus (RDV) were recorded using the Coherent X-ray Imaging (CXI) instrument at the Linac Coherent Light Source (LCLS). RDV was chosen as it is a well-characterized model system, useful for proof-of-principle experiments, system optimization and algorithm development. RDV, an icosahedral virus of about 70 nm in diameter, was aerosolized and injected into the approximately 0.1 μm diameter focused hard X-ray beam at the CXI instrument of LCLS. Diffraction patterns from RDV with signal to 5.9 Ångström were recorded. The diffraction data are available through the Coherent X-ray Imaging Data Bank (CXIDB) as a resource for algorithm development, the contents of which are described here.

ContributorsMunke, Anna (Author) / Andreasson, Jakob (Author) / Aquila, Andrew (Author) / Awel, Salah (Author) / Ayyer, Kartik (Author) / Barty, Anton (Author) / Bean, Richard J. (Author) / Berntsen, Peter (Author) / Bielecki, Johan (Author) / Boutet, Sebastien (Author) / Bucher, Maximilian (Author) / Chapman, Henry N. (Author) / Daurer, Benedikt J. (Author) / DeMirci, Hasan (Author) / Elser, Veit (Author) / Fromme, Petra (Author) / Hajdu, Janos (Author) / Hantke, Max F. (Author) / Higashiura, Akifumi (Author) / Hogue, Brenda (Author) / Hosseinizadeh, Ahmad (Author) / Kim, Yoonhee (Author) / Kirian, Richard (Author) / Reddy, Hemanth K. N. (Author) / Lan, Ti-Yen (Author) / Larsson, Daniel S. D. (Author) / Liu, Haiguang (Author) / Loh, N. Duane (Author) / Maia, Filipe R. N. C. (Author) / Mancuso, Adrian P. (Author) / Muhlig, Kerstin (Author) / Nakagawa, Atsushi (Author) / Nam, Daewoong (Author) / Nelson, Garrett (Author) / Nettelblad, Carl (Author) / Okamoto, Kenta (Author) / Ourmazd, Abbas (Author) / Rose, Max (Author) / van der Schot, Gijs (Author) / Schwander, Peter (Author) / Seibert, M. Marvin (Author) / Sellberg, Jonas A. (Author) / Sierra, Raymond G. (Author) / Song, Changyong (Author) / Svenda, Martin (Author) / Timneanu, Nicusor (Author) / Vartanyants, Ivan A. (Author) / Westphal, Daniel (Author) / Wiedom, Max O. (Author) / Williams, Garth J. (Author) / Xavier, Paulraj Lourdu (Author) / Soon, Chun Hong (Author) / Zook, James (Author) / College of Liberal Arts and Sciences (Contributor, Contributor) / School of Molecular Sciences (Contributor) / Biodesign Institute (Contributor) / Applied Structural Discovery (Contributor) / School of Life Sciences (Contributor) / Infectious Diseases and Vaccinology (Contributor) / Department of Physics (Contributor)
Created2016-08-01
130323-Thumbnail Image.png
Description
The ribosomal RNA (rrn) operon is a key suite of genes related to the production of protein synthesis machinery and thus to bacterial growth physiology. Experimental evidence has suggested an intrinsic relationship between the number of copies of this operon and environmental resource availability, especially the availability of phosphorus (P),

The ribosomal RNA (rrn) operon is a key suite of genes related to the production of protein synthesis machinery and thus to bacterial growth physiology. Experimental evidence has suggested an intrinsic relationship between the number of copies of this operon and environmental resource availability, especially the availability of phosphorus (P), because bacteria that live in oligotrophic ecosystems usually have few rrn operons and a slow growth rate. The Cuatro Ciénegas Basin (CCB) is a complex aquatic ecosystem that contains an unusually high microbial diversity that is able to persist under highly oligotrophic conditions. These environmental conditions impose a variety of strong selective pressures that shape the genome dynamics of their inhabitants. The genus Bacillus is one of the most abundant cultivable bacterial groups in the CCB and usually possesses a relatively large number of rrn operon copies (6–15 copies). The main goal of this study was to analyze the variation in the number of rrn operon copies of Bacillus in the CCB and to assess their growth-related properties as well as their stoichiometric balance (N and P content). We defined 18 phylogenetic groups within the Bacilli clade and documented a range of from six to 14 copies of the rrn operon. The growth dynamic of these Bacilli was heterogeneous and did not show a direct relation to the number of operon copies. Physiologically, our results were not consistent with the Growth Rate Hypothesis, since the copies of the rrn operon were decoupled from growth rate. However, we speculate that the diversity of the growth properties of these Bacilli as well as the low P content of their cells in an ample range of rrn copy number is an adaptive response to oligotrophy of the CCB and could represent an ecological mechanism that allows these taxa to coexist. These findings increase the knowledge of the variability in the number of copies of the rrn operon in the genus Bacillus and give insights about the physiology of this bacterial group under extreme oligotrophic conditions.
Created2016-01-05
130324-Thumbnail Image.png
Description
The increase of nutrients in water bodies, in particular nitrogen (N) and phosphorus (P) due to the recent expansion of agricultural and other human activities is accelerating environmental degradation of these water bodies, elevating the risk of eutrophication and reducing biodiversity. To evaluate the ecological effects of the influx of

The increase of nutrients in water bodies, in particular nitrogen (N) and phosphorus (P) due to the recent expansion of agricultural and other human activities is accelerating environmental degradation of these water bodies, elevating the risk of eutrophication and reducing biodiversity. To evaluate the ecological effects of the influx of nutrients in an oligotrophic and stoichiometrically imbalanced environment, we performed a replicated in situ mesocosm experiment. We analyzed the effects of a N- and P-enrichment on the bacterial interspecific interactions in an experiment conducted in the Cuatro Cienegas Basin (CCB) in Mexico. This is a desert ecosystem comprised of several aquatic systems with a large number of microbial endemic species. The abundance of key nutrients in this basin exhibits strong stoichiometric imbalance (high N:P ratios), suggesting that species diversity is maintained mostly by competition for resources. We focused on the biofilm formation and antibiotic resistance of 960 strains of cultivated bacteria in two habitats, water and sediment, before and after 3 weeks of fertilization. The water habitat was dominated by Pseudomonas, while Halomonas dominated the sediment. Strong antibiotic resistance was found among the isolates at time zero in the nutrient-poor bacterial communities, but resistance declined in the bacteria isolated in the nutrient-rich environments, suggesting that in the nutrient-poor original environment, negative inter-specific interactions were important, while in the nutrient-rich environments, competitive interactions are not so important. In water, a significant increase in the percentage of biofilm-forming strains was observed for all treatments involving nutrient addition.
ContributorsPonce-Soto, Gabriel Y. (Author) / Aguirre-von-Wobeser, Eneas (Author) / Eguiarte, Luis E. (Author) / Elser, James (Author) / Lee, Zarraz (Author) / Souza, Valeria (Author) / College of Liberal Arts and Sciences (Contributor) / School of Life Sciences (Contributor)
Created2015-04-01
130325-Thumbnail Image.png
Description

Testing mediation models is critical for identifying potential variables that need to be targeted to effectively change one or more outcome variables. In addition, it is now common practice for clinicians to use multiple informant (MI) data in studies of statistical mediation. By coupling the use of MI data with

Testing mediation models is critical for identifying potential variables that need to be targeted to effectively change one or more outcome variables. In addition, it is now common practice for clinicians to use multiple informant (MI) data in studies of statistical mediation. By coupling the use of MI data with statistical mediation analysis, clinical researchers can combine the benefits of both techniques. Integrating the information from MIs into a statistical mediation model creates various methodological and practical challenges. The authors review prior methodological approaches to MI mediation analysis in clinical research and propose a new latent variable approach that overcomes some limitations of prior approaches. An application of the new approach to mother, father, and child reports of impulsivity, frustration tolerance, and externalizing problems (N = 454) is presented. The results showed that frustration tolerance mediated the relationship between impulsivity and externalizing problems. The new approach allows for a more comprehensive and effective use of MI data when testing mediation models.

ContributorsPapa, Lesther A. (Author) / Litson, Kaylee (Author) / Lockhart, Ginger (Author) / Chassin, Laurie (Author) / Geiser, Christian (Author) / College of Liberal Arts and Sciences (Contributor) / Department of Psychology (Contributor)
Created2015-11-13
Description
Zoonotic pathogens that cause leprosy (Mycobacterium leprae) and tuberculosis (Mycobacterium tuberculosis complex, MTBC) continue to impact modern human populations. Therefore, methods able to survey mycobacterial infection in potential animal hosts are necessary for proper evaluation of human exposure threats. Here we tested for mycobacterial-specific single- and multi-copy loci using qPCR.

Zoonotic pathogens that cause leprosy (Mycobacterium leprae) and tuberculosis (Mycobacterium tuberculosis complex, MTBC) continue to impact modern human populations. Therefore, methods able to survey mycobacterial infection in potential animal hosts are necessary for proper evaluation of human exposure threats. Here we tested for mycobacterial-specific single- and multi-copy loci using qPCR. In a trial study in which armadillos were artificially infected with M. leprae, these techniques were specific and sensitive to pathogen detection, while more traditional ELISAs were only specific. These assays were then employed in a case study to detect M. leprae as well as MTBC in wild marmosets. All marmosets were negative for M. leprae DNA, but 14 were positive for the mycobacterial rpoB gene assay. Targeted capture and sequencing of rpoB and other MTBC genes validated the presence of mycobacterial DNA in these samples and revealed that qPCR is useful for identifying mycobacterial-infected animal hosts.
Created2015-11-16