Matching Items (952)
Filtering by

Clear all filters

150025-Thumbnail Image.png
Description
With the increasing focus on developing environmentally benign electronic packages, lead-free solder alloys have received a great deal of attention. Mishandling of packages, during manufacture, assembly, or by the user may cause failure of solder joint. A fundamental understanding of the behavior of lead-free solders under mechanical shock conditions is

With the increasing focus on developing environmentally benign electronic packages, lead-free solder alloys have received a great deal of attention. Mishandling of packages, during manufacture, assembly, or by the user may cause failure of solder joint. A fundamental understanding of the behavior of lead-free solders under mechanical shock conditions is lacking. Reliable experimental and numerical analysis of lead-free solder joints in the intermediate strain rate regime need to be investigated. This dissertation mainly focuses on exploring the mechanical shock behavior of lead-free tin-rich solder alloys via multiscale modeling and numerical simulations. First, the macroscopic stress/strain behaviors of three bulk lead-free tin-rich solders were tested over a range of strain rates from 0.001/s to 30/s. Finite element analysis was conducted to determine appropriate specimen geometry that could reach a homogeneous stress/strain field and a relatively high strain rate. A novel self-consistent true stress correction method is developed to compensate the inaccuracy caused by the triaxial stress state at the post-necking stage. Then the material property of micron-scale intermetallic was examined by micro-compression test. The accuracy of this measure is systematically validated by finite element analysis, and empirical adjustments are provided. Moreover, the interfacial property of the solder/intermetallic interface is investigated, and a continuum traction-separation law of this interface is developed from an atomistic-based cohesive element method. The macroscopic stress/strain relation and microstructural properties are combined together to form a multiscale material behavior via a stochastic approach for both solder and intermetallic. As a result, solder is modeled by porous plasticity with random voids, and intermetallic is characterized as brittle material with random vulnerable region. Thereafter, the porous plasticity fracture of the solders and the brittle fracture of the intermetallics are coupled together in one finite element model. Finally, this study yields a multiscale model to understand and predict the mechanical shock behavior of lead-free tin-rich solder joints. Different fracture patterns are observed for various strain rates and/or intermetallic thicknesses. The predictions have a good agreement with the theory and experiments.
ContributorsFei, Huiyang (Author) / Jiang, Hanqing (Thesis advisor) / Chawla, Nikhilesh (Thesis advisor) / Tasooji, Amaneh (Committee member) / Mobasher, Barzin (Committee member) / Rajan, Subramaniam D. (Committee member) / Arizona State University (Publisher)
Created2011
150035-Thumbnail Image.png
Description
Concrete columns constitute the fundamental supports of buildings, bridges, and various other infrastructures, and their failure could lead to the collapse of the entire structure. As such, great effort goes into improving the fire resistance of such columns. In a time sensitive fire situation, a delay in the failure of

Concrete columns constitute the fundamental supports of buildings, bridges, and various other infrastructures, and their failure could lead to the collapse of the entire structure. As such, great effort goes into improving the fire resistance of such columns. In a time sensitive fire situation, a delay in the failure of critical load bearing structures can lead to an increase in time allowed for the evacuation of occupants, recovery of property, and access to the fire. Much work has been done in improving the structural performance of concrete including reducing column sizes and providing a safer structure. As a result, high-strength (HS) concrete has been developed to fulfill the needs of such improvements. HS concrete varies from normal-strength (NS) concrete in that it has a higher stiffness, lower permeability and larger durability. This, unfortunately, has resulted in poor performance under fire. The lower permeability allows for water vapor to build up causing HS concrete to suffer from explosive spalling under rapid heating. In addition, the coefficient of thermal expansion (CTE) of HS concrete is lower than that of NS concrete. In this study, the effects of introducing a region of crumb rubber concrete into a steel-reinforced concrete column were analyzed. The inclusion of crumb rubber concrete into a column will greatly increase the thermal resistivity of the overall column, leading to a reduction in core temperature as well as the rate at which the column is heated. Different cases were analyzed while varying the positioning of the crumb-rubber region to characterize the effect of position on the improvement of fire resistance. Computer simulated finite element analysis was used to calculate the temperature and strain distribution with time across the column's cross-sectional area with specific interest in the steel - concrete region. Of the several cases which were investigated, it was found that the improvement of time before failure ranged between 32 to 45 minutes.
ContributorsZiadeh, Bassam Mohammed (Author) / Phelan, Patrick (Thesis advisor) / Kaloush, Kamil (Thesis advisor) / Jiang, Hanqing (Committee member) / Arizona State University (Publisher)
Created2011
150419-Thumbnail Image.png
Description
Pb-free solders are used as interconnects in various levels of micro-electronic packaging. Reliability of these interconnects is very critical for the performance of the package. One of the main factors affecting the reliability of solder joints is the presence of porosity which is introduced during processing of the joints. In

Pb-free solders are used as interconnects in various levels of micro-electronic packaging. Reliability of these interconnects is very critical for the performance of the package. One of the main factors affecting the reliability of solder joints is the presence of porosity which is introduced during processing of the joints. In this thesis, the effect of such porosity on the deformation behavior and eventual failure of the joints is studied using Finite Element (FE) modeling technique. A 3D model obtained by reconstruction of x-ray tomographic image data is used as input for FE analysis to simulate shear deformation and eventual failure of the joint using ductile damage model. The modeling was done in ABAQUS (v 6.10). The FE model predictions are validated with experimental results by comparing the deformation of the pores and the crack path as predicted by the model with the experimentally observed deformation and failure pattern. To understand the influence of size, shape, and distribution of pores on the mechanical behavior of the joint four different solder joints with varying degrees of porosity are modeled using the validated FE model. The validation technique mentioned above enables comparison of the simulated and actual deformation only. A more robust way of validating the FE model would be to compare the strain distribution in the joint as predicted by the model and as observed experimentally. In this study, to enable visualization of the experimental strain for the 3D microstructure obtained from tomography, a three dimensional digital image correlation (3D DIC) code has been implemented in MATLAB (MathWorks Inc). This developed 3D DIC code can be used as another tool to verify the numerical model predictions. The capability of the developed code in measuring local displacement and strain is demonstrated by considering a test case.
ContributorsJakkali, Vaidehi (Author) / Chawla, Nikhilesh K (Thesis advisor) / Jiang, Hanqing (Committee member) / Solanki, Kiran (Committee member) / Arizona State University (Publisher)
Created2011
148131-Thumbnail Image.png
Description

This case study describes an adult patient whose brachial plexus injury was treated with various modalities and exercise. The participant of this study was a 76 year old female who sustained a brachial plexus injury during an elective reverse total shoulder arthroplasty. The initial evaluation reported only passive range of

This case study describes an adult patient whose brachial plexus injury was treated with various modalities and exercise. The participant of this study was a 76 year old female who sustained a brachial plexus injury during an elective reverse total shoulder arthroplasty. The initial evaluation reported only passive range of motion with 90 degrees shoulder flexion, 85 degrees abduction, and 30 degrees external rotation. Muscle testing yielded significantly limited wrist and digit extension strength. Testing of sensation found diminished protective sensation along the median nerve distribution, including the thumb, index finger, and middle finger. Occupational therapy was initiated for postoperative treatment of the shoulder as well as treatment of the brachial plexus palsy. Therapy consisted of static splinting for healing structures and sensory reeducation through massage, finding objects with the eyes occluded, and fluidotherapy. Additionally, various exercises and modalities for improving motion and strength were initiated, including proprioceptive neuromuscular reeducation, passive/active assist/active exercises, dynamic splinting, muscle stimulation, kinesio tape, functional activities, and tendon glides. After five months, active range of motion in the shoulder, elbow, and wrist was finally achieved and median nerve sensation had improved. After nine months, elbow motion was within normal limits and wrist motion had significantly improved. Upon muscle testing, the elbow, forearm, wrist, and hand had made significant gains in strength. However, shoulder strength and motion was still limited. Overall, treatment made a significant improvement in the patient’s functionality.

ContributorsMorlock, Callista (Author) / Ramos, Christopher (Thesis director) / Thomas, Karen (Committee member) / College of Health Solutions (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
148132-Thumbnail Image.png
Description

Laminated composites are increasingly being used in various industries including <br/>automotive and aerospace. Under a variety of extreme loading conditions such as low and <br/>high-velocity impacts and crash, laminated composites delaminate. To understand how and<br/>when delamination occurs, two types of laboratory tests are conducted - End-notched <br/>Flexure (ENF) test and

Laminated composites are increasingly being used in various industries including <br/>automotive and aerospace. Under a variety of extreme loading conditions such as low and <br/>high-velocity impacts and crash, laminated composites delaminate. To understand how and<br/>when delamination occurs, two types of laboratory tests are conducted - End-notched <br/>Flexure (ENF) test and Double Cantilever Beam (DCB) test. The ENF test is designed to <br/>find the mode II interlaminar fracture toughness, and the DCB test, the mode I interlaminar <br/>fracture toughness. In this thesis, thermopressed Honeywell Spectra Shield® 5231 <br/>composite specimens made of ultra-high molecular weight polyethylene (UHMWPE), <br/>manufactured under two different pressures (3000 psi and 6000 psi), are tested in the <br/>laboratory to find its delamination properties. The test specimen preparation, experimental <br/>procedures, and data reduction to determine the mode I and mode II interlaminar fracture <br/>properties are discussed. The ENF test results show a 15.8% increase in strain energy <br/>release rate for the 6000 psi specimens when compared to the 3000 psi specimens. <br/>Conducting the DCB tests proved to be challenging due to the low compressive strength <br/>of the material and hence required modifications to the test specimens. An estimate of the <br/>mode I interlaminar fracture toughness was found for only two of the 6000 psi specimens.

ContributorsRyder, Chandler (Author) / Rajan, Subramaniam (Thesis director) / Khaled, Bilal (Committee member) / Neithalath, Narayanan (Committee member) / Mechanical and Aerospace Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
148135-Thumbnail Image.png
Description

Within the pediatric hospitalization experience, fear and anxiety are two emotions commonly felt by children of all ages. Hospitalized children can greatly benefit from interventions designed to help them cope with these emotions throughout their medical experiences. This study draws on each of our clinical experiences as volunteers at Phoenix

Within the pediatric hospitalization experience, fear and anxiety are two emotions commonly felt by children of all ages. Hospitalized children can greatly benefit from interventions designed to help them cope with these emotions throughout their medical experiences. This study draws on each of our clinical experiences as volunteers at Phoenix Children’s Hospital, and uses a qualitative analysis of three semi-structured interviews with currently employed Child Life Specialists to understand and analyze the use of medical play, a form of play intervention with a medical theme or medical equipment. We explore the goals and benefits of medical play for hospitalized pediatric patients, the process of using medical play as an intervention, including the activity design process, the assessments and adjustments made throughout the child’s hospitalization, and the considerations and limitations to implementing medical play activities. Ultimately, we found that the element of fun that defines play can be channeled into medical play activities implemented by skilled Child Life Specialists, who are experts in their field, in clinical settings to promote several different and beneficial goals, including pediatric patient coping.

ContributorsGarciapena, Danae (Co-author) / Aguiar, Lara (Co-author) / Loebenberg, Abby (Thesis director) / Swanson, Jodi (Committee member) / College of Health Solutions (Contributor) / School of Mathematical and Natural Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
147855-Thumbnail Image.png
Description

Background: The purpose of this study was to assess the efficacy of a lifestyle intervention on cardiorespiratory fitness in Latino youth with obesity and prediabetes. <br/>Methods: Participants (n=50) in this study were taken from a larger randomized controlled trial (n=180, BMI ≥ 95th percentile). Youth participated in a 6-month lifestyle

Background: The purpose of this study was to assess the efficacy of a lifestyle intervention on cardiorespiratory fitness in Latino youth with obesity and prediabetes. <br/>Methods: Participants (n=50) in this study were taken from a larger randomized controlled trial (n=180, BMI ≥ 95th percentile). Youth participated in a 6-month lifestyle intervention that included physical activity (60 minutes, 3x/week) and nutrition and wellness classes (60 minutes, 1x/week) delivered to families at the Lincoln Family YMCA in Downtown Phoenix. The primary outcome was cardiorespiratory fitness measured at baseline and post-intervention.<br/>Results: The mean BMI for the sample was 33.17 ± 4.54 kg/m2, which put the participants in the 98.4th percentile. At baseline, the mean VO2max was 2737.02 ± 488.89 mL/min. The mean relative VO2max was 30.65 ± 3.87 mL/kg/min. VO2max values significantly increased from baseline to post-intervention (2737.022 ± 483.977 mL/min vs 2932.654 ± 96.062 mL/min, p<0.001). <br/>Conclusion: Culturally-grounded, family-focused lifestyle interventions are a promising approach for improving cardiorespiratory fitness in high-risk youth at risk for diabetes.

ContributorsEstrada, Lourdes Alexa (Author) / Shaibi, Gabriel (Thesis director) / Peña, Armando (Committee member) / College of Health Solutions (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
147868-Thumbnail Image.png
Description

Long distance travel around the globe can potentially be revolutionized with the use of an intercontinental rocket that uses low earth orbit as its medium. This transport system can increase growth in many new businesses like tourism travel between the continents. This research evaluates the technical and non-technical possibilities

Long distance travel around the globe can potentially be revolutionized with the use of an intercontinental rocket that uses low earth orbit as its medium. This transport system can increase growth in many new businesses like tourism travel between the continents. This research evaluates the technical and non-technical possibilities of using a double-stage reusable rocket, where the second stage is also a reusable, rocket-powered passenger vehicle using a low earth orbit space journey with a stabilized re-entry method that ensures passenger comfortability. A potential network of spaceports spanning the globe is postulated within a range of 4,000 km to 8,000 km(2,160 nm to 4,320 nm) of each other, and each located within an hour by any other means of ground transport to population hubs greater than four million. This will help further connect the world as the journey from one major city to another would take at most an hour, and no point on the habited continents would be more than 4,000 km(2,160 nm) from a spaceport. It is assumed that the costs of an international first class flight ticket are in the thousands of dollars range showing how there is a potential market for this type of travel network. The reasoning and analysis, through a literature review, for an intercontinental rocket vehicle is presented along with the various aspects of the possibility of this kind of travel network coming to fruition in the near future.

ContributorsRanganathan, Anirudh (Co-author) / Karthikeyan, Sayish (Co-author) / Takahashi, Timothy (Thesis director) / Niemczyk, Mary (Committee member) / Mechanical and Aerospace Engineering Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
148155-Thumbnail Image.png
Description

A novel concept for integration of flame-assisted fuel cells (FFC) with a gas turbine is analyzed in this paper. Six different fuels (CH4, C3H8, JP-4, JP-5, JP-10(L), and H2) are investigated for the analytical model of the FFC integrated gas turbine hybrid system. As equivalence ratio increases, the efficiency of

A novel concept for integration of flame-assisted fuel cells (FFC) with a gas turbine is analyzed in this paper. Six different fuels (CH4, C3H8, JP-4, JP-5, JP-10(L), and H2) are investigated for the analytical model of the FFC integrated gas turbine hybrid system. As equivalence ratio increases, the efficiency of the hybrid system increases initially then decreases because the decreasing flow rate of air begins to outweigh the increasing hydrogen concentration. This occurs at an equivalence ratio of 2 for CH4. The thermodynamic cycle is analyzed using a temperature entropy diagram and a pressure volume diagram. These thermodynamic diagrams show as equivalence ratio increases, the power generated by the turbine in the hybrid setup decreases. Thermodynamic analysis was performed to verify that energy is conserved and the total chemical energy going into the system was equal to the heat rejected by the system plus the power generated by the system. Of the six fuels, the hybrid system performs best with H2 as the fuel. The electrical efficiency with H2 is predicted to be 27%, CH4 is 24%, C3H8 is 22%, JP-4 is 21%, JP-5 is 20%, and JP-10(L) is 20%. When H2 fuel is used, the overall integrated system is predicted to be 24.5% more efficient than the standard gas turbine system. The integrated system is predicted to be 23.0% more efficient with CH4, 21.9% more efficient with C3H8, 22.7% more efficient with JP-4, 21.3% more efficient with JP-5, and 20.8% more efficient with JP-10(L). The sensitivity of the model is investigated using various fuel utilizations. When CH4 fuel is used, the integrated system is predicted to be 22.7% more efficient with a fuel utilization efficiency of 90% compared to that of 30%.

ContributorsRupiper, Lauren Nicole (Author) / Milcarek, Ryan (Thesis director) / Wang, Liping (Committee member) / Mechanical and Aerospace Engineering Program (Contributor) / School for Engineering of Matter,Transport & Enrgy (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
148163-Thumbnail Image.png
Description

The following paper explores the various effects of stress on the endocrine system. Many understand that being stressed can jeopardize maintaining adequate health, but what specifically happens when humans are stressed? Why does stress affect human health? This paper delves into background information, previous research, and the depths to which

The following paper explores the various effects of stress on the endocrine system. Many understand that being stressed can jeopardize maintaining adequate health, but what specifically happens when humans are stressed? Why does stress affect human health? This paper delves into background information, previous research, and the depths to which stress negatively affects the body. The effects stress has on the endocrine system, specifically on the hypothalamic-pituitary-thyroid axis (HPT) and hypothalamic-pituitary-adrenal axis (HPA), is discussed, and additionally, at home de-stressing methods are researched. The study included a set of participants at Arizona State University. The method took place over the course of 2 weeks: one normal week, and the other with the implementation of a de-stressing method. The normal week involved the participants living their daily lives with the addition of a stress-measuring survey, while the second week involved implementing a de-stressing method and stress-measuring survey. The purpose of this study was to discover if there was a correlation between performing these relaxation activities and decreasing stress levels in ASU students. The results found that students reported they felt more relaxed and calm after the activities. Overall, this thesis provides information and first hand research on the effects of stress and stress-reducing activities and discusses the importance of maintaining lower stress levels throughout everyday life.

ContributorsWeissmann, Megan Diane (Co-author) / Gebara, Nayla (Co-author) / Don, Rachael (Thesis director) / Irving, Andrea (Committee member) / Kizer, Elizabeth (Committee member) / College of Health Solutions (Contributor) / Edson College of Nursing and Health Innovation (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05