Matching Items (166)
152291-Thumbnail Image.png
Description
Rabies disease remains enzootic among raccoons, skunks, foxes and bats in the United States. It is of primary concern for public-health agencies to control spatial spread of rabies in wildlife and its potential spillover infection of domestic animals and humans. Rabies is invariably fatal in wildlife if untreated, with a

Rabies disease remains enzootic among raccoons, skunks, foxes and bats in the United States. It is of primary concern for public-health agencies to control spatial spread of rabies in wildlife and its potential spillover infection of domestic animals and humans. Rabies is invariably fatal in wildlife if untreated, with a non-negligible incubation period. Understanding how this latency affects spatial spread of rabies in wildlife is the concern of chapter 2 and 3. Chapter 1 deals with the background of mathematical models for rabies and lists main objectives. In chapter 2, a reaction-diffusion susceptible-exposed-infected (SEI) model and a delayed diffusive susceptible-infected (SI) model are constructed to describe the same epidemic process -- rabies spread in foxes. For the delayed diffusive model a non-local infection term with delay is resulted from modeling the dispersal during incubation stage. Comparison is made regarding minimum traveling wave speeds of the two models, which are verified using numerical experiments. In chapter 3, starting with two Kermack and McKendrick's models where infectivity, death rate and diffusion rate of infected individuals can depend on the age of infection, the asymptotic speed of spread $c^\ast$ for the cumulated force of infection can be analyzed. For the special case of fixed incubation period, the asymptotic speed of spread is governed by the same integral equation for both models. Although explicit solutions for $c^\ast$ are difficult to obtain, assuming that diffusion coefficient of incubating animals is small, $c^\ast$ can be estimated in terms of model parameter values. Chapter 4 considers the implementation of realistic landscape in simulation of rabies spread in skunks and bats in northeast Texas. The Finite Element Method (FEM) is adopted because the irregular shapes of realistic landscape naturally lead to unstructured grids in the spatial domain. This implementation leads to a more accurate description of skunk rabies cases distributions.
ContributorsLiu, Hao (Author) / Kuang, Yang (Thesis advisor) / Jackiewicz, Zdzislaw (Committee member) / Lanchier, Nicolas (Committee member) / Smith, Hal (Committee member) / Thieme, Horst (Committee member) / Arizona State University (Publisher)
Created2013
152247-Thumbnail Image.png
Description
Surface plasmon resonance (SPR) has emerged as a popular technique for elucidating subtle signals from biological events in a label-free, high throughput environment. The efficacy of conventional SPR sensors, whose signals are mass-sensitive, diminishes rapidly with the size of the observed target molecules. The following work advances the current SPR

Surface plasmon resonance (SPR) has emerged as a popular technique for elucidating subtle signals from biological events in a label-free, high throughput environment. The efficacy of conventional SPR sensors, whose signals are mass-sensitive, diminishes rapidly with the size of the observed target molecules. The following work advances the current SPR sensor paradigm for the purpose of small molecule detection. The detection limits of two orthogonal components of SPR measurement are targeted: speed and sensitivity. In the context of this report, speed refers to the dynamic range of measured kinetic rate constants, while sensitivity refers to the target molecule mass limitation of conventional SPR measurement. A simple device for high-speed microfluidic delivery of liquid samples to a sensor surface is presented to address the temporal limitations of conventional SPR measurement. The time scale of buffer/sample switching is on the order of milliseconds, thereby minimizing the opportunity for sample plug dispersion. The high rates of mass transport to and from the central microfluidic sensing region allow for SPR-based kinetic analysis of binding events with dissociation rate constants (kd) up to 130 s-1. The required sample volume is only 1 μL, allowing for minimal sample consumption during high-speed kinetic binding measurement. Charge-based detection of small molecules is demonstrated by plasmonic-based electrochemical impedance microscopy (P-EIM). The dependence of surface plasmon resonance (SPR) on surface charge density is used to detect small molecules (60-120 Da) printed on a dextran-modified sensor surface. The SPR response to an applied ac potential is a function of the surface charge density. This optical signal is comprised of a dc and an ac component, and is measured with high spatial resolution. The amplitude and phase of local surface impedance is provided by the ac component. The phase signal of the small molecules is a function of their charge status, which is manipulated by the pH of a solution. This technique is used to detect and distinguish small molecules based on their charge status, thereby circumventing the mass limitation (~100 Da) of conventional SPR measurement.
ContributorsMacGriff, Christopher Assiff (Author) / Tao, Nongjian (Thesis advisor) / Wang, Shaopeng (Committee member) / LaBaer, Joshua (Committee member) / Chae, Junseok (Committee member) / Arizona State University (Publisher)
Created2013
152123-Thumbnail Image.png
Description
This dissertation investigates the condition of skeletal muscle insulin resistance using bioinformatics and computational biology approaches. Drawing from several studies and numerous data sources, I have attempted to uncover molecular mechanisms at multiple levels. From the detailed atomistic simulations of a single protein, to datamining approaches applied at the systems

This dissertation investigates the condition of skeletal muscle insulin resistance using bioinformatics and computational biology approaches. Drawing from several studies and numerous data sources, I have attempted to uncover molecular mechanisms at multiple levels. From the detailed atomistic simulations of a single protein, to datamining approaches applied at the systems biology level, I provide new targets to explore for the research community. Furthermore I present a new online web resource that unifies various bioinformatics databases to enable discovery of relevant features in 3D protein structures.
ContributorsMielke, Clinton (Author) / Mandarino, Lawrence (Committee member) / LaBaer, Joshua (Committee member) / Magee, D. Mitchell (Committee member) / Dinu, Valentin (Committee member) / Willis, Wayne (Committee member) / Arizona State University (Publisher)
Created2013
150637-Thumbnail Image.png
Description
Bacteriophage (phage) are viruses that infect bacteria. Typical laboratory experiments show that in a chemostat containing phage and susceptible bacteria species, a mutant bacteria species will evolve. This mutant species is usually resistant to the phage infection and less competitive compared to the susceptible bacteria species. In some experiments, both

Bacteriophage (phage) are viruses that infect bacteria. Typical laboratory experiments show that in a chemostat containing phage and susceptible bacteria species, a mutant bacteria species will evolve. This mutant species is usually resistant to the phage infection and less competitive compared to the susceptible bacteria species. In some experiments, both susceptible and resistant bacteria species, as well as phage, can coexist at an equilibrium for hundreds of hours. The current research is inspired by these observations, and the goal is to establish a mathematical model and explore sufficient and necessary conditions for the coexistence. In this dissertation a model with infinite distributed delay terms based on some existing work is established. A rigorous analysis of the well-posedness of this model is provided, and it is proved that the susceptible bacteria persist. To study the persistence of phage species, a "Phage Reproduction Number" (PRN) is defined. The mathematical analysis shows phage persist if PRN > 1 and vanish if PRN < 1. A sufficient condition and a necessary condition for persistence of resistant bacteria are given. The persistence of the phage is essential for the persistence of resistant bacteria. Also, the resistant bacteria persist if its fitness is the same as the susceptible bacteria and if PRN > 1. A special case of the general model leads to a system of ordinary differential equations, for which numerical simulation results are presented.
ContributorsHan, Zhun (Author) / Smith, Hal (Thesis advisor) / Armbruster, Dieter (Committee member) / Kawski, Matthias (Committee member) / Kuang, Yang (Committee member) / Thieme, Horst (Committee member) / Arizona State University (Publisher)
Created2012
150705-Thumbnail Image.png
Description
Recombinant protein expression is essential to biotechnology and molecular medicine, but facile methods for obtaining significant quantities of folded and functional protein in mammalian cell culture have been lacking. Here I describe a novel 37-nucleotide in vitro selected sequence that promotes unusually high transgene expression in a vaccinia driven cytoplasmic

Recombinant protein expression is essential to biotechnology and molecular medicine, but facile methods for obtaining significant quantities of folded and functional protein in mammalian cell culture have been lacking. Here I describe a novel 37-nucleotide in vitro selected sequence that promotes unusually high transgene expression in a vaccinia driven cytoplasmic expression system. Vectors carrying this sequence in a monocistronic reporter plasmid produce >1,000-fold more protein than equivalent vectors with conventional vaccinia promoters. Initial mechanistic studies indicate that high protein expression results from dual activity that impacts both transcription and translation. I suggest that this motif represents a powerful new tool in vaccinia-based protein expression and vaccine development technology.
ContributorsFlores, Julia Anne (Author) / Chaput, John C (Thesis advisor) / Jacobs, Bertram (Committee member) / LaBaer, Joshua (Committee member) / Arizona State University (Publisher)
Created2012
150711-Thumbnail Image.png
Description
In vertebrate outer retina, changes in the membrane potential of horizontal cells affect the calcium influx and glutamate release of cone photoreceptors via a negative feedback. This feedback has a number of important physiological consequences. One is called background-induced flicker enhancement (BIFE) in which the onset of dim background enhances

In vertebrate outer retina, changes in the membrane potential of horizontal cells affect the calcium influx and glutamate release of cone photoreceptors via a negative feedback. This feedback has a number of important physiological consequences. One is called background-induced flicker enhancement (BIFE) in which the onset of dim background enhances the center flicker response of horizontal cells. The underlying mechanism for the feedback is still unclear but competing hypotheses have been proposed. One is the GABA hypothesis, which states that the feedback is mediated by gamma-aminobutyric acid (GABA), an inhibitory neurotransmitter released from horizontal cells. Another is the ephaptic hypothesis, which contends that the feedback is non-GABAergic and is achieved through the modulation of electrical potential in the intersynaptic cleft between cones and horizontal cells. In this study, a continuum spine model of the cone-horizontal cell synaptic circuitry is formulated. This model, a partial differential equation system, incorporates both the GABA and ephaptic feedback mechanisms. Simulation results, in comparison with experiments, indicate that the ephaptic mechanism is necessary in order for the model to capture the major spatial and temporal dynamics of the BIFE effect. In addition, simulations indicate that the GABA mechanism may play some minor modulation role.
ContributorsChang, Shaojie (Author) / Baer, Steven M. (Thesis advisor) / Gardner, Carl L (Thesis advisor) / Crook, Sharon M (Committee member) / Kuang, Yang (Committee member) / Ringhofer, Christian (Committee member) / Arizona State University (Publisher)
Created2012
136024-Thumbnail Image.png
Description
Background: Human papillomavirus (HPV) is the cause of 99.7% of cervical cancers. Research of cervical cancer has made this disease mostly curable in the developing world. Head and neck cancer, which is increasingly caused by HPV, still is associated with a mortality rate of 50,000 in the US annually. This

Background: Human papillomavirus (HPV) is the cause of 99.7% of cervical cancers. Research of cervical cancer has made this disease mostly curable in the developing world. Head and neck cancer, which is increasingly caused by HPV, still is associated with a mortality rate of 50,000 in the US annually. This study proposed to evaluate the biology of HPV-16 in head and neck tumors by using RT-qPCR to measure the RNA expression and its relation to physical status of the virus. Methods: This study was to develop an assay that uses RT-qPCR to determine the quantitative expression of HPV-16 RNA coding for proteins E1, E2, E4, E5, E6, and E7 in tumor samples. The assay development started with creation of primers. It went on to test the primers on template DNA through traditional PCR and then on DNA from HPV-16 positive cell lines, SiHa and CaSki, using RT-qPCR. This paper also describes the troubleshooting methods taken for the PCR reaction. Once the primers are verified, the RT-qPCR process can be carried out on RNA purified from tumor samples. Results: No primer sets have been confirmed to produce a product through PCR or RT-qPCR. The primer sequences match up correctly with known sequences for HPV-16 E1, E2, E4, E5, E6, and E7. RT-qPCR showed results consistent with the hypothesis. Conclusion: The RT-qPCR protocol must be optimized to confirm the primer sequences work as desired. Then primers will be used to study physical status and RNA expression in HPV-positive and HPV-negative head and neck tumor samples. This assay can help shed light on which proteins are expressed most in tumors of the head and neck and will aid in the development of future screening and treatment options.
ContributorsKhazanovich, Jakob (Author) / Anderson, Karen (Thesis director) / Mangone, Marco (Committee member) / Sundaresan, Sri Krishna (Committee member) / Barrett, The Honors College (Contributor)
Created2015-05
135905-Thumbnail Image.png
Description
This study was conducted to observe the effects of vitamin C supplementation upon the expression of sICAM-1 in asthmatic subject. Two groups were created, each with a sample size of 4 subjects. One group was the vitamin C group (VC) and the other was the placebo group (PL). The study

This study was conducted to observe the effects of vitamin C supplementation upon the expression of sICAM-1 in asthmatic subject. Two groups were created, each with a sample size of 4 subjects. One group was the vitamin C group (VC) and the other was the placebo group (PL). The study was analyzed through observing concentrations of biomolecules present within samples of blood plasma and nasal lavages. These included vitamin C, sICAM-1 expression, and histamine. The following P-values calculated from the data collected from this study. The plasma vitamin C screening was p=0.3, and after 18 days of supplementation, p=0.03. For Nasal ICAM p=0.5 at Day 0, p=0.4 at Day 4, and p=0.9 at Day 18. For the Histamine samples p=0.9 at Day 0 and p=0.9 at Day 18. The following P-values calculated from the data collected from both studies. The plasma vitamin C screening was p=0.8, and after 18 days of supplementation, p=0.03. The change of vitamin C at the end of this study and the combined data both had a P-value that was calculated to be lower than 0.05, which meant that this change was significant because it was due to the intervention and not chance. For Nasal ICAM samples p=0.7 at Day 0, p=0.7 at Day 4, and p=1 at Day 18. For the Histamine p=0.7 at Day 0 and p=0.9 at Day 18. This study carries various implications although the study data was unable to show much significance. This was the second study to test this, and as more research is done, and the sample size grows, one will be able to observe whether this really is the mechanism through which vitamin C plays a role in immunological functions.
ContributorsKapadia, Chirag Vinay (Author) / Johnston, Carol (Thesis director) / LaBaer, Joshua (Committee member) / School of Molecular Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2015-12
135780-Thumbnail Image.png
Description
Duchenne Muscular Dystrophy (DMD) is an X-linked recessive disease characterized by progressive muscle loss and weakness. This disease arises from a mutation that occurs on a gene that encodes for dystrophin, which results in observable muscle death and inflammation; however, the genetic changes that result from dystrophin's dysfunctionality remain unknown.

Duchenne Muscular Dystrophy (DMD) is an X-linked recessive disease characterized by progressive muscle loss and weakness. This disease arises from a mutation that occurs on a gene that encodes for dystrophin, which results in observable muscle death and inflammation; however, the genetic changes that result from dystrophin's dysfunctionality remain unknown. Current DMD research uses mdx mice as a model, and while very useful, does not allow the study of cell-autonomous transcriptome changes during the progression of DMD due to the strong inflammatory response, perhaps hiding important therapeutic targets. C. elegans, which has a very weak inflammatory response compared to mdx mice and humans, has been used in the past to study DMD with some success. The worm ortholog of the dystrophin gene has been identified as dys-1 since its mutation phenocopies the progression of the disease and a portion of the human dystrophin gene alleviates symptoms. Importantly, the extracted RNA transcriptome from dys-1 worms showed significant change in gene expression, which needs to be further investigated with the development of a more robust model. Our lab previously published a method to isolate high-quality muscle-specific RNA from worms, which could be used to study such changes at higher resolution. We crossed the dys-1 worms with our muscle-specific strain and demonstrated that the chimeric strain exhibits similar behavioral symptoms as DMD patients as characterized by a shortened lifespan, difficulty in movement, and a decrease in speed. The presence of dys-1 and other members of the dystrophin complex in the body muscle were supported by the development of a resulting phenotype due to RNAi knockdown of each component in the body muscle; however, further experimentation is needed to reinforce this conclusion. Thus, the constructed chimeric C. elegans strain possesses unique characteristics that will allow the study of genetic changes, such as transcriptome rearrangements and dysregulation of miRNA, and how they affect the progression of DMD.
ContributorsNguyen, Thuy-Duyen Cao (Author) / Mangone, Marco (Thesis director) / Newbern, Jason (Committee member) / Duchaine, Thomas (Committee member) / School of Social Transformation (Contributor) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
136684-Thumbnail Image.png
Description
microRNAs (miRNAs) are short ~22nt non-coding RNAs that regulate gene output at the post-transcriptional level. Via targeting of degenerate elements primarily in 3'untranslated regions (3'UTR) of mRNAs, miRNAs can target thousands of varying genes and suppress their protein translation. The precise mechanistic function and bio- logical role of miRNAs is

microRNAs (miRNAs) are short ~22nt non-coding RNAs that regulate gene output at the post-transcriptional level. Via targeting of degenerate elements primarily in 3'untranslated regions (3'UTR) of mRNAs, miRNAs can target thousands of varying genes and suppress their protein translation. The precise mechanistic function and bio- logical role of miRNAs is not fully understood and yet it is a major contributor to a pleth- ora of diseases, including neurological disorders, muscular disorders, and cancer. Cer- tain model organisms are valuable in understanding the function of miRNA and there- fore fully understanding the biological significance of miRNA targeting. Here I report a mechanistic analysis of miRNA targeting in C. elegans, and a bioinformatic approach to aid in further investigation of miRNA targeted sequences. A few of the biologically significant mechanisms discussed in this thesis include alternative polyadenylation, RNA binding proteins, components of the miRNA recognition machinery, miRNA secondary structures, and their polymorphisms. This thesis also discusses a novel bioinformatic approach to studying miRNA biology, including computational miRNA target prediction software, and sequence complementarity. This thesis allows a better understanding of miRNA biology and presents an ideal strategy for approaching future research in miRNA targeting.
ContributorsWeigele, Dustin Keith (Author) / Mangone, Marco (Thesis director) / Katchman, Benjamin (Committee member) / Barrett, The Honors College (Contributor) / Department of Chemistry and Biochemistry (Contributor) / School of Life Sciences (Contributor)
Created2014-12