Matching Items (106)
Filtering by

Clear all filters

193649-Thumbnail Image.png
Description
To combat the global antimalarial resistance crisis effective resistance management strategies are needed. To do so, I need to gain a better understanding of the ecological interactions occurring within malaria infections. Despite the importance of the complex interplay among co-infecting strains, our current knowledge and empirical data of within-host diversity

To combat the global antimalarial resistance crisis effective resistance management strategies are needed. To do so, I need to gain a better understanding of the ecological interactions occurring within malaria infections. Despite the importance of the complex interplay among co-infecting strains, our current knowledge and empirical data of within-host diversity and malaria disease dynamics is limited. In this thesis, I explore the multifaceted dynamics of malaria infections through an ecological lens. My overall research question is: "How do ecological interactions, including niche complementarity, competition dynamics, and the cost of resistance, shape the outcomes of malaria infections, and what implications does this have on understanding and improving resistance management strategies?” In Chapter II, titled “Niche Complementarity in Malaria Infections” I demonstrate that ecological principles are observed in malarial infections by experimentally manipulating the biodiversity of rodent malaria P. chabaudi infections. I observed that some parasites experienced competitive suppression, others experienced competitive facilitation, while others were not impacted. Next, in Chapter III, titled “Determining the Differential Impact of Competition Between Genetically Distinct Plasmodium falciparum Strains” I investigate the differential effect of competition among six genetically distinct strains. The impact of competition varied between strain combinations, and both suppression and facilitation were observed, but most pairings had no competitive interactions. Lastly, in Chapter IV, titled “Assessing Fitness Costs in Malaria Parasites: A Comprehensive Review and Implications for Drug Resistance Management”, I summarize where the field currently stands and what evidence there is for the presence of a fitness cost, or lack thereof, and I highlight the current gaps in knowledge. I found that evidence from field, in vitro, and animal models are overall suggestive of the presence of a fitness cost, however, these costs were not always found. Amid the current focus on malaria eradication, it is crucial to understand the impact of biodiversity on disease severity. By incorporating an ecological approach to infectious disease systems, I can gain insights on within-host interactions and how they impact parasite fitness and transmissibility.
ContributorsSegovia, Xyonane (Author) / Huijben, Silvie (Thesis advisor) / Bean, Heather (Committee member) / Gile, Gillian (Committee member) / Hogue, Ian (Committee member) / Lake, Douglas (Committee member) / Arizona State University (Publisher)
Created2024
193456-Thumbnail Image.png
Description
Peptide-based vaccines represent a promising strategy to develop personalized treatments for cancer immunotherapy. Despite their specificity and low cost of production, these vaccines have had minimal success in clinical studies due to their lack of immunogenicity, creating a need for more effective vaccine designs. Adjuvants can be incorporated to enhance

Peptide-based vaccines represent a promising strategy to develop personalized treatments for cancer immunotherapy. Despite their specificity and low cost of production, these vaccines have had minimal success in clinical studies due to their lack of immunogenicity, creating a need for more effective vaccine designs. Adjuvants can be incorporated to enhance their immunogenicity by promoting dendritic cell activation and antigen cross-presentation. Due to their favorable size and ability to incorporate peptides and adjuvants, nanoparticles represent an advantageous platform for designing peptide vaccines. One prime example is RNA origami (RNA-OG) nanostructures, which are nucleic acid nanostructures programmed to assemble into uniform shapes and sizes. These stable nanostructures can rationally incorporate small molecules giving them a wide array of functions. Furthermore, RNA-OG itself can function as an adjuvant to stimulate innate immune cells. In the following study, self-adjuvanted RNA-OG was employed as a vaccine assembly platform, incorporating tumor peptides onto the nanostructure to design RNA-OG-peptide nanovaccines for cancer immunotherapy. RNA-OG-peptide was found to induce dendritic cell activation and antigen cross-presentation, which mobilized tumor-specific cytotoxic T cells to elicit protective anti-tumor immunity in tumor-bearing mice. These findings demonstrate the therapeutic potential of RNA-OG as a stable, carrier-free nanovaccine platform. In an attempt to further enhance the efficacy by optimizing the amount of peptides assembled, RNA-OG was complexed with polylysine-linked peptides, a simple strategy that allowed peptide amounts to be varied. Interestingly, increasing the peptide load led to decreased vaccine efficacy, which was correlated with an ineffective CD8+ T cell response. On the other hand, the vaccine efficacy was improved by decreasing the amount of peptide loaded onto RNA-OG, which may have attributed to greater complex stability compared to the high peptide load. These results highlight a simple strategy that can be used to optimize vaccine efficacy by altering the load of assembled peptides. These studies advance our understanding of RNA-OG as a peptide vaccine platform and provide various strategies to improve the design of peptide vaccines for translation into cancer immunotherapy.
ContributorsYip, Theresa (Author) / Chang, Yung (Thesis advisor) / Borges Florsheim, Esther (Committee member) / Lake, Douglas (Committee member) / Yan, Hao (Committee member) / Arizona State University (Publisher)
Created2024
156521-Thumbnail Image.png
Description
Signal transduction networks comprising protein-protein interactions (PPIs) mediate homeostatic, diseased, and therapeutic cellular responses. Mapping these networks has primarily focused on identifying interactors, but less is known about the interaction affinity, rates of interaction or their regulation. To better understand the extent of the annotated human interactome, I first examined

Signal transduction networks comprising protein-protein interactions (PPIs) mediate homeostatic, diseased, and therapeutic cellular responses. Mapping these networks has primarily focused on identifying interactors, but less is known about the interaction affinity, rates of interaction or their regulation. To better understand the extent of the annotated human interactome, I first examined > 2500 protein interactions within the B cell receptor (BCR) signaling pathway using a current, cutting-edge bioluminescence-based platform called “NanoBRET” that is capable of analyzing transient and stable interactions in high throughput. Eighty-three percent (83%) of the detected interactions have not been previously reported, indicating that much of the BCR pathway is still unexplored. Unfortunately, NanoBRET, as with all other high throughput methods, cannot determine binding kinetics or affinities. To address this shortcoming, I developed a hybrid platform that characterizes > 400 PPIs quantitatively and simultaneously in < 1 hour by combining the high throughput and flexible nature of nucleic programmable protein arrays (NAPPA) with the quantitative abilities of surface plasmon resonance imaging (SPRi). NAPPA-SPRi was then used to study the kinetics and affinities of > 12,000 PPIs in the BCR signaling pathway, revealing unique kinetic mechanisms that are employed by proteins, phosphorylation and activation states to regulate PPIs. In one example, activation of the GTPase RAC1 with nonhydrolyzable GTP-γS minimally affected its binding affinities with phosphorylated proteins but increased, on average, its on- and off-rates by 4 orders of magnitude for one-third of its interactions. In contrast, this phenomenon occurred with virtually all unphosphorylated proteins. The majority of the interactions (85%) were novel, sharing 40% of the same interactions as NanoBRET as well as detecting 55% more interactions than NanoBRET. In addition, I further validated four novel interactions identified by NAPPA-SPRi using SDS-PAGE migration and Western blot analyses. In one case, we have the first evidence of a direct enzyme-substrate interaction between two well-known proto-oncogenes that are abnormally regulated in > 30% of cancers, PI3K and MYC. Herein, PI3K is demonstrated to phosphorylate MYC at serine 62, a phosphosite that increases the stability of MYC. This study provides valuable insight into how PPIs, phosphorylation, and GTPase activation regulate the BCR signal transduction pathway. In addition, these methods could be applied toward understanding other signaling pathways, pathogen-host interactions, and the effect of protein mutations on protein interactions.
ContributorsPetritis, Brianne Ogata (Author) / LaBaer, Joshua (Thesis advisor) / Lake, Douglas (Committee member) / Wang, Shaopeng (Committee member) / Arizona State University (Publisher)
Created2018
157235-Thumbnail Image.png
Description
Quiescin sulfhydryl oxidase 1 (QSOX1) is an enzyme that catalyzes disulfide bond formation by oxidizing two free sulfhydryl groups. QSOX1 consists of a thioredoxin (Trx) and an ERV (essential for respiration and viability)/ALR (augmenter of liver regeneration) domain which each contain CxxC motifs that work to bind to substrates and

Quiescin sulfhydryl oxidase 1 (QSOX1) is an enzyme that catalyzes disulfide bond formation by oxidizing two free sulfhydryl groups. QSOX1 consists of a thioredoxin (Trx) and an ERV (essential for respiration and viability)/ALR (augmenter of liver regeneration) domain which each contain CxxC motifs that work to bind to substrates and shuttle electrons to a flavin adenine dinucleotide (FAD) cofactor that accepts the electrons and reduces molecular oxygen to hydrogen peroxide. Investigation of the role of QSOX1 in cancer progression started when it was found at higher abundance in pancreatic ductal adenocarcinoma (PDA) patient plasma compared to healthy normal donor plasma. Increased expression in QSOX1 has been further identified in breast, lung, kidney, prostate, and other cancers. QSOX1 expression is associated with cell proliferation and invasion in vitro and tumor growth in vivo. Additionally, the enzymatic activity of QSOX1 in the extracellular matrix (ECM) is important for cell invasion in vitro. Small molecule inhibitors of QSOX1 have been shown to have antitumorigenic properties in vitro and in vivo. It was hypothesized that monoclonal antibodies (mAbs) against QSOX1 would inhibit cell invasion in vitro. In this work, mice were immunized with eukaryotic-derived rQSOX1 for generation of hybridomas. Hundreds of hybridoma clones were screened by enzyme-linked immunosorbent assay (ELISA) and a fluorescent QSOX1 activity assay. Multiple rounds of subcloning and screening identified 2F1.14 and 3A10.6 as mAbs of interest. The genes for the variable regions of the antibodies were rescued and sequenced. The sequences were aligned with the variable region sequences of another published αQSOX1 mAb scFv492.1. 2F1.14 inhibits the enzymatic activity of QSOX1 by binding to the active site of QSOX1, which was determined by epitope mapping against mutants of QSOX1 that contained mutations in the active site. 3A10.6 did not appear to inhibit the function of QSOX1 in the activity assay; however, it, along with 2F1.14, suppressed tumor invasion in a 3D invasion model. These findings support the developing idea that QSOX1 is a viable target for cancer treatment because targeted inhibition of QSOX1 extracellularly reduced invasive activity. The mAbs and rQSOX1 variants produced here can serve as tools in furthering the characterization of QSOX1 and its role in cancer.
ContributorsKoelbel, Calvin John (Author) / Lake, Douglas (Thesis advisor) / Chen, Qiang "Shawn" (Committee member) / Ho, Thai (Committee member) / Arizona State University (Publisher)
Created2019
157309-Thumbnail Image.png
Description
Anthropogenic land use has irrevocably transformed the natural systems on which humankind relies. Understanding where, why, and how social and economic processes drive globally-important land-use changes, from deforestation to urbanization, has advanced substantially. Illicit and clandestine activities--behavior that is intentionally secret because it breaks formal laws or violates informal norms--are

Anthropogenic land use has irrevocably transformed the natural systems on which humankind relies. Understanding where, why, and how social and economic processes drive globally-important land-use changes, from deforestation to urbanization, has advanced substantially. Illicit and clandestine activities--behavior that is intentionally secret because it breaks formal laws or violates informal norms--are poorly understood, however, despite the recognition of their significant role in land change. This dissertation fills this lacuna by studying illicit and clandestine activity and quantifying its influence on land-use patterns through examining informal urbanization in Mexico City and deforestation Central America. The first chapter introduces the topic, presenting a framework to examine illicit transactions in land systems. The second chapter uses data from interviews with actors involved with land development in Mexico City, demonstrating how economic and political payoffs explain the persistence of four types of informal urban expansion. The third chapter examines how electoral politics influence informal urban expansion and land titling in Mexico City using panel regression. Results show land title distribution increases just before elections, and more titles are extended to loyal voters of the dominant party in power. Urban expansion increases with electoral competition in local elections for borough chiefs and legislators. The fourth chapter tests and confirms the hypothesis that narcotrafficking has a causal effect on forest loss in Central America from 2001-2016 using two proxies of narcoactivity: drug seizures and events from media reports. The fifth chapter explores the spatial signature and pattern of informal urban development. It uses a typology of urban informality identified in chapter two to hypothesize and demonstrate distinct urban expansion patterns from satellite imagery. The sixth and final chapter summarizes the role of illicit and clandestine activity in shaping deforestation and urban expansion through illegal economies, electoral politics, and other informal transactions. Measures of illicit and clandestine activity should--and could--be incorporated into land change models to account for a wider range of relevant causes. This dissertation shines a new light on the previously hidden processes behind ever-easier to detect land-use patterns as earth observing satellites increase spatial and temporal resolution.
ContributorsTellman, Elizabeth (Author) / Turner II, Billie L (Thesis advisor) / Eakin, Hallie (Thesis advisor) / Janssen, Marco (Committee member) / Alba, Felipe de (Committee member) / Jain, Meha (Committee member) / Arizona State University (Publisher)
Created2019
157161-Thumbnail Image.png
Description
Antibodies are naturally occurring proteins that protect a host during infection through direct neutralization and/or recruitment of the innate immune system. Unfortunately, in some infections, antibodies present unique hurdles that must be overcome for a safer and more efficacious antibody-based therapeutic (e.g., antibody dependent viral enhancement (ADE) and inflammatory pathology).

Antibodies are naturally occurring proteins that protect a host during infection through direct neutralization and/or recruitment of the innate immune system. Unfortunately, in some infections, antibodies present unique hurdles that must be overcome for a safer and more efficacious antibody-based therapeutic (e.g., antibody dependent viral enhancement (ADE) and inflammatory pathology). This dissertation describes the utilization of plant expression systems to produce N-glycan specific antibody-based therapeutics for Dengue Virus (DENV) and Chikungunya Virus (CHIKV). The Fc region of an antibody interacts with Fcγ Receptors (FcγRs) on immune cells and components of the innate immune system. Each class of immune cells has a distinct action of neutralization (e.g., antibody dependent cell-mediated cytotoxicity (ADCC) and antibody dependent cell-mediated phagocytosis (ADCP)). Therefore, structural alteration of the Fc region results in novel immune pathways of protection. One approach is to modulate the N-glycosylation in the Fc region of the antibody. Of scientific significance, is the plant’s capacity to express human antibodies with homogenous plant and humanized N-glycosylation (WT and GnGn, respectively). This allows to study how specific glycovariants interact with other components of the immune system to clear an infection, producing a tailor-made antibody for distinct diseases. In the first section, plant-produced glycovariants were explored for reduced interactions with specific FcγRs for the overall reduction in ADE for DENV infections. The results demonstrate a reduction in ADE of our plant-produced monoclonal antibodies in in vitro experiments, which led to a greater survival in vivo of immunodeficient mice challenged with lethal doses of DENV and a sub-lethal dose of DENV in ADE conditions. In the second section, plant-produced glycovariants were explored for increased interaction with specific FcγRs to improve ADCC in the treatment of the highly inflammatory CHIKV. The results demonstrate an increase ADCC activity in in vitro experiments and a reduction in CHIKV-associated inflammation in in vivo mouse models. Overall, the significance of this dissertation is that it can provide a treatment for DENV and CHIKV; but equally importantly, give insight to the role of N-glycosylation in antibody effector functions, which has a broader implication for therapeutic development for other viral infections.
ContributorsHurtado, Jonathan (Author) / Chen, Qiang (Thesis advisor) / Arntzen, Charles (Committee member) / Borges, Chad (Committee member) / Lake, Douglas (Committee member) / Arizona State University (Publisher)
Created2019
152964-Thumbnail Image.png
Description
Small Cell Carcinoma of the Ovary Hypercalcemic Type (SCCOHT) is a rare and highly aggressive ovarian cancer that affects children and young women at a mean age of 24 years. Most SCCOHT patients are diagnosed at an advanced stage and do not respond to chemotherapy. As a result, more than

Small Cell Carcinoma of the Ovary Hypercalcemic Type (SCCOHT) is a rare and highly aggressive ovarian cancer that affects children and young women at a mean age of 24 years. Most SCCOHT patients are diagnosed at an advanced stage and do not respond to chemotherapy. As a result, more than 75% of patients succumb to their disease within 1-2 years. To provide insights into the biological, diagnostic, and therapeutic vulnerabilities of this deadly cancer, a comprehensive characterization of 22 SCCOHT cases and 2 SCCOHT cell lines using microarray and next-generation sequencing technologies was performed. Following histological examination, tumor DNA and RNA were extracted and used for array comparative genomic hybridization and gene expression microarray analyses. In agreement with previous reports, SCCOHT presented consistently diploid profiles with few copy number aberrations. Gene expression analysis showed SCCOHT tumors have a unique gene expression profile unlike that of most common epithelial ovarian carcinomas. Dysregulated cell cycle control, DNA repair, DNA damage-response, nucleosome assembly, neurogenesis and nervous system development were all characteristic of SCCOHT tumors. Sequencing of DNA from SCCOHT patients and cell lines revealed germline and somatic inactivating mutations in the SWI/SNF chromatin-remodeling gene SMARCA4 in 79% (19/24) of SCCOHT patients in addition to SMARCA4 protein loss in 84% (16/19) of SCCOHT tumors, but in only 0.4% (2/485) of other primary ovarian tumors. Ongoing studies are now focusing on identifying treatments for SCCOHT based on therapeutic vulnerabilities conferred by ubiquitous inactivating mutations in SMARCA4 in addition to gene and protein expression data. Our characterization of the molecular landscape of SCCOHT and the breakthrough identification of inactivating SMARCA4 mutations in almost all cases of SCCOHT offers the first significant insight into the molecular pathogenesis of this disease. The loss of SMARCA4 protein is a highly sensitive and specific marker of the disease, highlighting its potential role as a diagnostic marker, and offers the opportunity for genetic testing of family members at risk. Outstanding questions remain about the role of SMARCA4 loss in the biology, histogenesis, diagnosis, and treatment of SCCOHT.
ContributorsRamos, Pilar (Author) / Anderson, Karen (Thesis advisor) / Trent, Jeffrey (Committee member) / Kusumi, Kenro (Committee member) / Lake, Douglas (Committee member) / Arizona State University (Publisher)
Created2014
153827-Thumbnail Image.png
Description
Vaccines against the arthropod-borne dengue virus (DENV) are still commercially nonexistent. A subunit immunization strategy may be of value, especially if a safe viral vector acts as a biologically active adjuvant. The DENV envelope protein (E), the main target for neutralizing immune responses, has three conformational domains. The immunoglobulin-like and

Vaccines against the arthropod-borne dengue virus (DENV) are still commercially nonexistent. A subunit immunization strategy may be of value, especially if a safe viral vector acts as a biologically active adjuvant. The DENV envelope protein (E), the main target for neutralizing immune responses, has three conformational domains. The immunoglobulin-like and independently folding domain III (DIII) contains epitopes that elicit highly specific neutralizing antibodies. The hepatitis B small surface antigen (HBsAg, S) was used as a scaffold to display DENV 2 DIII on a virus-like particle (VLP). A measles virus (MV) was engineered to vector HBsAg and the hybrid glycoprotein DIII-HBsAg in two different loci (DIII-S). Despite the relatively deleterious effect on replication caused by the insertion of two transcription cassettes, the recombinant virus MVvac2(DIII-S,S)P induced the secretion of DIII-S hybrid VLP with a similar sucrose density as HBsAg particles (1.10-1.12g/ml) and peaked at 48 h post-infection producing 1.3x106 TCID50/ml infectious MV units in vitro. A second recombinant virus, MVvac2(DIII-S)N, was engineered to vector only the hybrid DIII-S. However, it did not induce the secretion of hybrid HBsAg particles in the supernatant of infected cells. The immunogenicity of the recombinant viruses was tested in a MV-susceptible small animal model, the experimental group which received two 105 TCID50 I.P. doses of MVvac2(DIII-S,S)P in a 28 day interval developed a robust immune response against MV (1:1280), HBsAg (787 mIU/ml) and DENV2 (Log10 neutralization index of 1.2) on average. In summary, it is possible to display DENV E DIII on hybrid HBsAg particles vectored by MV that elicit an immune response. This forms the basis for a potential vaccine platform against DENV.
ContributorsHarahap, Indira (Author) / Reyes del Valle, Jorge (Thesis advisor) / Hogue, Brenda G (Thesis advisor) / Lake, Douglas (Committee member) / Mason, Hugh (Committee member) / Arizona State University (Publisher)
Created2015
154259-Thumbnail Image.png
Description
Quiescin sulfhydryl oxidase 1 (QSOX1) is a highly conserved disulfide bond-generating enzyme that represents the ancient fusion of two major thiol-disulfide oxidoreductase gene families: thioredoxin and ERV. QSOX1 was first linked with cancer after being identified as overexpressed in pancreatic ductal adenocarcinoma (but not in adjacent normal ductal epithelia, infiltrating

Quiescin sulfhydryl oxidase 1 (QSOX1) is a highly conserved disulfide bond-generating enzyme that represents the ancient fusion of two major thiol-disulfide oxidoreductase gene families: thioredoxin and ERV. QSOX1 was first linked with cancer after being identified as overexpressed in pancreatic ductal adenocarcinoma (but not in adjacent normal ductal epithelia, infiltrating lymphocytes, or chronic pancreatitis). QSOX1 overexpression has been confirmed in a number of other histological tumor types, such as breast, lung, kidney, prostate, and others. Expression of QSOX1 supports a proliferative and invasive phenotype in tumor cells, and its enzymatic activity is critical for promoting an invasive phenotype. An in vivo tumor growth study utilizing the pancreatic tumor cell line MIAPaCa-2 containing a QSOX1-silencing shRNA construct revealed that QSOX1 expression supports a proliferative phenotype. These preliminary studies suggest that suppressing the enzymatic activity of QSOX1 could represent a novel therapeutic strategy to inhibit proliferation and invasion of malignant neoplasms.

The goal of this research was to identify and characterize biologically active small molecule inhibitors for QSOX1. Chemical inhibition of QSOX1 enzymatic activity was hypothesized to reduce growth and invasion of tumor cells. Recombinant QSOX1 was screened against libraries of small molecules using an enzymatic activity assay to identify potential QSOX1 inhibitors. Two lead QSOX1 inhibitors were confirmed, 2-phenyl-1, 2-benzisoselenazol-3-one (ebselen), and 3-methoxy-n-[4-(1 pyrrolidinyl)phenyl]benzamide. The biological activity of these compounds is consistent with QSOX1 knockdown in tumor cell lines, reducing growth and invasion in vitro. Treatment of tumor cells with these compounds also resulted in specific ECM defects, a phenotype associated with QSOX1 knockdown. Additionally, these compounds were shown to be active in pancreatic and renal cancer xenografts, reducing tumor growth with daily treatment. For ebselen, the molecular mechanism of inhibition was determined using a combination of biochemical and mass spectrometric techniques. The results obtained in these studies provide proof-of-principle that targeting QSOX1 enzymatic activity with chemical compounds represents a novel potential therapeutic avenue worthy of further investigation in cancer. Additionally, the utility of these small molecules as chemical probes will yield future insight into the general biology of QSOX1, including the identification of novel substrates of QSOX1.
ContributorsHanavan, Paul D (Author) / Lake, Douglas (Thesis advisor) / LaBaer, Joshua (Committee member) / Mangone, Marco (Committee member) / Borges, Chad (Committee member) / Arizona State University (Publisher)
Created2015
154222-Thumbnail Image.png
Description
Coccidioidomycosis (valley fever) is caused by inhalation of arthrospores from soil-dwelling fungi, Coccidioides immitis and C. posadasii. This dimorphic fungus and disease are endemic to the southwestern United States, central valley in California and Mexico. The Genome of Coccidioidies has been sequenced but proteomic studies are absent. To address this

Coccidioidomycosis (valley fever) is caused by inhalation of arthrospores from soil-dwelling fungi, Coccidioides immitis and C. posadasii. This dimorphic fungus and disease are endemic to the southwestern United States, central valley in California and Mexico. The Genome of Coccidioidies has been sequenced but proteomic studies are absent. To address this gap in knowledge, we generated proteome of Spherulin (lysate of Spherule phase) using LC-MS/MS and identified over 1300 proteins. We also investigated lectin reactivity to spherules in human lung tissue based on the hypothesis that coccidioidal glycosylation is different from mammalian glycosylation, and therefore certain lectins would have differential binding properties to fungal glycoproteins. Lectin-based immunohistochemistry using formalin-fixed paraffin-embedded human lung tissue from human coccidioidomycosis patients demonstrated that Griffonia simplificonia lectin II (GSL II) and succinylated wheat germ agglutinin (sWGA) bound specifically to endospores and spherules in infected lungs, but not to adjacent human tissue. GSL II and sWGA-lectin affinity chromatography using Spherulin, followed by LC-MS/MS was used to isolate and identify 195 proteins that bind to GSL-II lectin and 224 proteins that bind to sWGA lectin. This is the first report that GSL II and sWGA lectins bind specifically to Coccidioides endospores and spherules in infected human tissues. Our list of proteins from spherulin (whole and GSL-II and sWGA binding fraction) may also serve as a Coccidioidal Rosetta-Stone generated from mass spectra to identify proteins from 3 different databases: The Broad Institutes Coccidioides Genomes project, RefSeq and SwissProt. This also serves as a viable avenue for proteomics based diagnostic test development for valley fever. Using lectin chromatography and LC MS/MS, we identified over 100 proteins in plasma of two patients and six proteins in urine of one patient. We also identified over eighty fungal proteins isolated from spherules from biopsied infected lung tissue. This, to the best of our knowledge, is the first such example of detecting coccidioidal proteins in patient blood and urine and provides a foundation for development of a proteomics based diagnostic test as opposed to presently available but unreliable serologic diagnostic tests reliant on an antibody response in the host.
ContributorsKaushal, Setu (Author) / Lake, Douglas (Thesis advisor) / Magee, Dewey Mitchell (Committee member) / Chandler, Douglas (Committee member) / Rawls, Jeffery (Committee member) / Arizona State University (Publisher)
Created2015