Matching Items (65)
137601-Thumbnail Image.png
Description
Thirty six percent of Americans are obese and thirty three percent are overweight; obesity has become a known killer in the U.S. yet its prevalence has maintained a firm grasp on the U.S. population and continues to spread across the globe as other countries slowly adopt the American lifestyle. A

Thirty six percent of Americans are obese and thirty three percent are overweight; obesity has become a known killer in the U.S. yet its prevalence has maintained a firm grasp on the U.S. population and continues to spread across the globe as other countries slowly adopt the American lifestyle. A survey was compiled collecting demographic and body mass index (BMI) information, as well as Tanofsky-Kraff’s (2009) “Assess Eating in the Absence of Hunger” survey questions. The survey used for this study was emailed out to Arizona State University students in Barrett, The Honors College, and the ASU School of Nutrition and Health Promotion listservs. A total of 457 participants completed the survey, 72 males and 385 females (mean age, 24.5±7.7 y; average body mass index (BMI), 23.4 ± 4.8 [a BMI of 25-29.9 is classified as overweight]). When comparing BMI with the living situation, 71% of obese students were living at home with family versus off campus with friends or alone. For comparison, 45% of normal weight students lived at home with family.  These data could help structure prevention plans targeting college students by focusing on weight gain prevention at the family level. Results from the Tanofsky-Kraff (2009) survey revealed there was not a significant relationship between external or physical cues and BMI in men or women, but there was a significant positive correlation between emotional cues and BMI in women only. Anger and sadness were the emotional cues in women related to initiating consumption past satiation and consumption following several hours of fasting. Although BMI was inversely related to physical activity in this sample (r = -0.132; p=0.005), controlling for physical activity did not impact the significant associations of BMI with anger or sadness (P>0.05).  This information is important in targeting prevention programs to address behavioral change and cognitive awareness of the effects of emotion on over-consumption.
ContributorsGarza, Andrea Marie (Author) / Johnston, Carol (Thesis director) / Jacobs, Mark (Committee member) / Coletta, Dawn (Committee member) / Barrett, The Honors College (Contributor) / Department of Psychology (Contributor) / School of Life Sciences (Contributor)
Created2013-05
137286-Thumbnail Image.png
Description
New-onset diabetes after kidney transplantation (NODAT) occurs in 20% of kidney transplant patients. In 5 patients who are at risk for new-onset diabetes after kidney transplantation, skeletal muscle gene expression profiling was performed both before and after kidney transplant. The differences in gene expression before and after transplant were compared

New-onset diabetes after kidney transplantation (NODAT) occurs in 20% of kidney transplant patients. In 5 patients who are at risk for new-onset diabetes after kidney transplantation, skeletal muscle gene expression profiling was performed both before and after kidney transplant. The differences in gene expression before and after transplant were compared in order to identify specific genes that could be linked to developing NODAT. These findings could open new avenues for future research.
ContributorsLowery, Clint Curtis (Author) / Coletta, Dawn (Thesis director) / Katsanos, Christos (Committee member) / Willis, Wayne (Committee member) / Barrett, The Honors College (Contributor) / Department of Chemistry and Biochemistry (Contributor) / W. P. Carey School of Business (Contributor)
Created2014-05
137400-Thumbnail Image.png
Description
DNA methylation, a subset of epigenetics, has been found to be a significant marker associated with variations in gene expression and activity across the entire human genome. As of now, however, there is little to no information about how DNA methylation varies between different tissues inside a singular person's body.

DNA methylation, a subset of epigenetics, has been found to be a significant marker associated with variations in gene expression and activity across the entire human genome. As of now, however, there is little to no information about how DNA methylation varies between different tissues inside a singular person's body. By using research data from a preliminary study of lean and obese clinical subjects, this study attempts to put together a profile of the differences in DNA methylation that can be observed between two particular body tissues from this subject group: blood and skeletal muscle. This study allows us to start describing the changes that occur at the epigenetic level that influence how differently these two tissues operate, along with seeing how these tissues change between individuals of different weight classes, especially in the context of the development of symptoms of Type 2 Diabetes.
ContributorsRappazzo, Micah Gabriel (Author) / Coletta, Dawn (Thesis director) / Katsanos, Christos (Committee member) / Dinu, Valentin (Committee member) / Barrett, The Honors College (Contributor) / Harrington Bioengineering Program (Contributor) / Department of Psychology (Contributor)
Created2013-12
141473-Thumbnail Image.png
Description

Critical flicker fusion thresholds (CFFTs) describe when quick amplitude modulations of a light source become undetectable as the frequency of the modulation increases and are thought to underlie a number of visual processing skills, including reading. Here, we compare the impact of two vision-training approaches, one involving contrast sensitivity training

Critical flicker fusion thresholds (CFFTs) describe when quick amplitude modulations of a light source become undetectable as the frequency of the modulation increases and are thought to underlie a number of visual processing skills, including reading. Here, we compare the impact of two vision-training approaches, one involving contrast sensitivity training and the other directional dot-motion training, compared to an active control group trained on Sudoku. The three training paradigms were compared on their effectiveness for altering CFFT. Directional dot-motion and contrast sensitivity training resulted in significant improvement in CFFT, while the Sudoku group did not yield significant improvement. This finding indicates that dot-motion and contrast sensitivity training similarly transfer to effect changes in CFFT. The results, combined with prior research linking CFFT to high-order cognitive processes such as reading ability, and studies showing positive impact of both dot-motion and contrast sensitivity training in reading, provide a possible mechanistic link of how these different training approaches impact reading abilities.

ContributorsZhou, Tianyou (Author) / Nanez, Jose (Author) / Zimmerman, Daniel (Author) / Holloway, Steven (Author) / Seitz, Aaron (Author) / New College of Interdisciplinary Arts and Sciences (Contributor)
Created2016-10-26
141474-Thumbnail Image.png
Description

Although autism spectrum disorder (ASD) is a serious lifelong condition, its underlying neural mechanism remains unclear. Recently, neuroimaging-based classifiers for ASD and typically developed (TD) individuals were developed to identify the abnormality of functional connections (FCs). Due to over-fitting and interferential effects of varying measurement conditions and demographic distributions, no

Although autism spectrum disorder (ASD) is a serious lifelong condition, its underlying neural mechanism remains unclear. Recently, neuroimaging-based classifiers for ASD and typically developed (TD) individuals were developed to identify the abnormality of functional connections (FCs). Due to over-fitting and interferential effects of varying measurement conditions and demographic distributions, no classifiers have been strictly validated for independent cohorts. Here we overcome these difficulties by developing a novel machine-learning algorithm that identifies a small number of FCs that separates ASD versus TD. The classifier achieves high accuracy for a Japanese discovery cohort and demonstrates a remarkable degree of generalization for two independent validation cohorts in the USA and Japan. The developed ASD classifier does not distinguish individuals with major depressive disorder and attention-deficit hyperactivity disorder from their controls but moderately distinguishes patients with schizophrenia from their controls. The results leave open the viable possibility of exploring neuroimaging-based dimensions quantifying the multiple-disorder spectrum.

ContributorsYahata, Noriaki (Author) / Morimoto, Jun (Author) / Hashimoto, Ryuichiro (Author) / Lisi, Giuseppe (Author) / Shibata, Kazuhisa (Author) / Kawakubo, Yuki (Author) / Kuwabara, Hitoshi (Author) / Kuroda, Miho (Author) / Yamada, Takashi (Author) / Megumi, Fukuda (Author) / Imamizu, Hiroshi (Author) / Nanez, Jose (Author) / Takahashi, Hidehiko (Author) / Okamoto, Yasumasa (Author) / Kasai, Kiyoto (Author) / Kato, Nobumasa (Author) / Sasaki, Yuka (Author) / Watanabe, Takeo (Author) / Kawato, Mitsuo (Author) / New College of Interdisciplinary Arts and Sciences (Contributor)
Created2016-04-14
134184-Thumbnail Image.png
Description
Historically, Supreme Court interpretations of the Constitution of the United States have been significantly important, impacting the lives of every American. This honors thesis seeks to understand the ways in which the Constitution has been interpreted through the lens of political ideology. Using constitutional theory, I explain how the political

Historically, Supreme Court interpretations of the Constitution of the United States have been significantly important, impacting the lives of every American. This honors thesis seeks to understand the ways in which the Constitution has been interpreted through the lens of political ideology. Using constitutional theory, I explain how the political ideologies of classical liberalism, conservatism, libertarianism, and progressive liberalism have played a role in the interpretations of the First, Second, and Fourth Amendments. I also examine how these ideological interpretations have changed from 1776 to 2017, dividing the history of the United States into four eras: the Founding Era, the Civil War Era, the New Deal Era, and the Modern Era. First, the First Amendment's clauses on religion are examined, where I focus on the separation between church and state as well as the concepts of "establishment" and "free exercise." The First Amendment transitions from classically liberal, to conservative, to progressively liberal and classically liberal, to progressively liberal and libertarian. Next, we look at the Second Amendment's notions of a "militia" and the "right to keep and bear arms." The Second Amendment's interpretations begin classically liberal, then change to classically liberal and progressively liberal, to progressively liberal, to conservative. Finally, the analysis on the Fourth Amendment's "unreasonable searches and seizures" as well as "warrants" lends evidence to ideological interpretations. The Fourth Amendment, like the other two, starts classically liberal for two eras, then becomes libertarian, and finally ends libertarian and conservative. The implications of each of these conclusions are then discussed, with emphasis on public opinion in society during the era in question, the ways in which the ideologies in each era seem to build upon one another, the ideologies of the justices who wrote the opinions, and the ideology of the court.
Created2017-12
134507-Thumbnail Image.png
Description
Obesity and related health disparities including type 2 diabetes disproportionately impact Latino youth. These health disparities may be the result of gene-environment interactions, but limited research has examined these interactions in the pediatric age group. Lifestyle intervention is the cornerstone for preventing diabetes among high-risk populations and epigenetic and genetic

Obesity and related health disparities including type 2 diabetes disproportionately impact Latino youth. These health disparities may be the result of gene-environment interactions, but limited research has examined these interactions in the pediatric age group. Lifestyle intervention is the cornerstone for preventing diabetes among high-risk populations and epigenetic and genetic factors may help explain the biological mechanisms underlying diabetes risk reduction following lifestyle changes. MicroRNAs (miRNAs) are small, non-coding RNA’s that regulate gene expression and have emerged as potential biomarkers for predicting type 2 diabetes risk in adults but have yet to be applied to youth. Therefore, the purpose of this study was to identify changes in miRNA expression among Latino youth with prediabetes (4 female/2 male, ages 14-16, BMI percentile 99 ±.2) who participated in a 12-week lifestyle intervention focused on increasing physical activity and improving nutrition-related behaviors.
ContributorsKarch, Jamie (Co-author) / Day, Samantha (Co-author) / Shaibi, Gabriel (Thesis director) / Coletta, Dawn (Committee member) / Arizona State University. College of Nursing & Healthcare Innovation (Contributor) / College of Integrative Sciences and Arts (Contributor) / Barrett, The Honors College (Contributor)
Created2017-05
129561-Thumbnail Image.png
Description

Extreme events, a type of collective behavior in complex networked dynamical systems, often can have catastrophic consequences. To develop effective strategies to control extreme events is of fundamental importance and practical interest. Utilizing transportation dynamics on complex networks as a prototypical setting, we find that making the network “mobile” can

Extreme events, a type of collective behavior in complex networked dynamical systems, often can have catastrophic consequences. To develop effective strategies to control extreme events is of fundamental importance and practical interest. Utilizing transportation dynamics on complex networks as a prototypical setting, we find that making the network “mobile” can effectively suppress extreme events. A striking, resonance-like phenomenon is uncovered, where an optimal degree of mobility exists for which the probability of extreme events is minimized. We derive an analytic theory to understand the mechanism of control at a detailed and quantitative level, and validate the theory numerically. Implications of our finding to current areas such as cybersecurity are discussed.

ContributorsChen, Yu-Zhong (Author) / Huang, Zi-Gang (Author) / Lai, Ying-Cheng (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2014-08-18
129524-Thumbnail Image.png
Description

The relation between flux and fluctuation is fundamental to complex physical systems that support and transport flows. A recently obtained law predicts monotonous enhancement of fluctuation as the average flux is increased, which in principle is valid but only for large systems. For realistic complex systems of small sizes, this

The relation between flux and fluctuation is fundamental to complex physical systems that support and transport flows. A recently obtained law predicts monotonous enhancement of fluctuation as the average flux is increased, which in principle is valid but only for large systems. For realistic complex systems of small sizes, this law breaks down when both the average flux and fluctuation become large. Here we demonstrate the failure of this law in small systems using real data and model complex networked systems, derive analytically a modified flux-fluctuation law, and validate it through computations of a large number of complex networked systems. Our law is more general in that its predictions agree with numerics and it reduces naturally to the previous law in the limit of large system size, leading to new insights into the flow dynamics in small-size complex systems with significant implications for the statistical and scaling behaviors of small systems, a topic of great recent interest.

ContributorsHuang, Zi-Gang (Author) / Dong, Jia-Qi (Author) / Huang, Liang (Author) / Lai, Ying-Cheng (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2014-10-27
129477-Thumbnail Image.png
Description

Evolutionary dynamical models for cyclic competitions of three species (e.g., rock, paper, and scissors, or RPS) provide a paradigm, at the microscopic level of individual interactions, to address many issues in coexistence and biodiversity. Real ecosystems often involve competitions among more than three species. By extending the RPS game model

Evolutionary dynamical models for cyclic competitions of three species (e.g., rock, paper, and scissors, or RPS) provide a paradigm, at the microscopic level of individual interactions, to address many issues in coexistence and biodiversity. Real ecosystems often involve competitions among more than three species. By extending the RPS game model to five (rock-paper-scissors-lizard-Spock, or RPSLS) mobile species, we uncover a fundamental type of mesoscopic interactions among subgroups of species. In particular, competitions at the microscopic level lead to the emergence of various local groups in different regions of the space, each involving three species. It is the interactions among the groups that fundamentally determine how many species can coexist. In fact, as the mobility is increased from zero, two transitions can occur: one from a five- to a three-species coexistence state and another from the latter to a uniform, single-species state. We develop a mean-field theory to show that, in order to understand the first transition, group interactions at the mesoscopic scale must be taken into account. Our findings suggest, more broadly, the importance of mesoscopic interactions in coexistence of great many species.

ContributorsCheng, Hongyan (Author) / Yao, Nan (Author) / Huang, Zi-Gang (Author) / Park, Junpyo (Author) / Do, Younghae (Author) / Lai, Ying-Cheng (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2014-12-15