Matching Items (68)
Filtering by

Clear all filters

Description

In an effort to address the lack of literature in on-campus active travel, this study aims to investigate the following primary questions:<br/>• What are the modes that students use to travel on campus?<br/>• What are the motivations that underlie the mode choice of students on campus?<br/>My first stage of research

In an effort to address the lack of literature in on-campus active travel, this study aims to investigate the following primary questions:<br/>• What are the modes that students use to travel on campus?<br/>• What are the motivations that underlie the mode choice of students on campus?<br/>My first stage of research involved a series of qualitative investigations. I held one-on-one virtual interviews with students in which I asked them questions about the mode they use and why they feel that their chosen mode works best for them. These interviews served two functions. First, they provided me with insight into the various motivations underlying student mode choice. Second, they provided me with an indication of what explanatory variables should be included in a model of mode choice on campus.<br/>The first half of the research project informed a quantitative survey that was released via the Honors Digest to attract student respondents. Data was gathered on travel behavior as well as relevant explanatory variables.<br/>My analysis involved developing a logit model to predict student mode choice on campus and presenting the model estimation in conjunction with a discussion of student travel motivations based on the qualitative interviews. I use this information to make a recommendation on how campus infrastructure could be modified to better support the needs of the student population.

ContributorsMirtich, Laura Christine (Author) / Salon, Deborah (Thesis director) / Fang, Kevin (Committee member) / School of Public Affairs (Contributor) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
147886-Thumbnail Image.png
Description

The goal of this project was to design and create a genetic construct that would allow for <br/>tumor growth to be induced in the center of the wing imaginal disc of Drosophila larvae, the <br/>R85E08 domain, using a heat shock. The resulting transgene would be combined with other <br/>transgenes in

The goal of this project was to design and create a genetic construct that would allow for <br/>tumor growth to be induced in the center of the wing imaginal disc of Drosophila larvae, the <br/>R85E08 domain, using a heat shock. The resulting transgene would be combined with other <br/>transgenes in a single fly that would allow for simultaneous expression of the oncogene and, in <br/>the surrounding cells, other genes of interest. This system would help establish Drosophila as a <br/>more versatile and reliable model organism for cancer research. Furthermore, pilot studies were <br/>performed, using elements of the final proposed system, to determine if tumor growth is possible <br/>in the center of the disc, which oncogene produces the best results, and if oncogene expression <br/>induced later in development causes tumor growth. Three different candidate genes were <br/>investigated: RasV12, PvrACT, and Avli.

ContributorsSt Peter, John Daniel (Author) / Harris, Rob (Thesis director) / Varsani, Arvind (Committee member) / School of Molecular Sciences (Contributor) / Department of Psychology (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
150231-Thumbnail Image.png
Description
In this thesis I introduce a new direction to computing using nonlinear chaotic dynamics. The main idea is rich dynamics of a chaotic system enables us to (1) build better computers that have a flexible instruction set, and (2) carry out computation that conventional computers are not good at it.

In this thesis I introduce a new direction to computing using nonlinear chaotic dynamics. The main idea is rich dynamics of a chaotic system enables us to (1) build better computers that have a flexible instruction set, and (2) carry out computation that conventional computers are not good at it. Here I start from the theory, explaining how one can build a computing logic block using a chaotic system, and then I introduce a new theoretical analysis for chaos computing. Specifically, I demonstrate how unstable periodic orbits and a model based on them explains and predicts how and how well a chaotic system can do computation. Furthermore, since unstable periodic orbits and their stability measures in terms of eigenvalues are extractable from experimental times series, I develop a time series technique for modeling and predicting chaos computing from a given time series of a chaotic system. After building a theoretical framework for chaos computing I proceed to architecture of these chaos-computing blocks to build a sophisticated computing system out of them. I describe how one can arrange and organize these chaos-based blocks to build a computer. I propose a brand new computer architecture using chaos computing, which shifts the limits of conventional computers by introducing flexible instruction set. Our new chaos based computer has a flexible instruction set, meaning that the user can load its desired instruction set to the computer to reconfigure the computer to be an implementation for the desired instruction set. Apart from direct application of chaos theory in generic computation, the application of chaos theory to speech processing is explained and a novel application for chaos theory in speech coding and synthesizing is introduced. More specifically it is demonstrated how a chaotic system can model the natural turbulent flow of the air in the human speech production system and how chaotic orbits can be used to excite a vocal tract model. Also as another approach to build computing system based on nonlinear system, the idea of Logical Stochastic Resonance is studied and adapted to an autoregulatory gene network in the bacteriophage λ.
ContributorsKia, Behnam (Author) / Ditto, William (Thesis advisor) / Huang, Liang (Committee member) / Lai, Ying-Cheng (Committee member) / Helms Tillery, Stephen (Committee member) / Arizona State University (Publisher)
Created2011
150551-Thumbnail Image.png
Description
Complex dynamical systems consisting interacting dynamical units are ubiquitous in nature and society. Predicting and reconstructing nonlinear dynamics of units and the complex interacting networks among them serves the base for the understanding of a variety of collective dynamical phenomena. I present a general method to address the two outstanding

Complex dynamical systems consisting interacting dynamical units are ubiquitous in nature and society. Predicting and reconstructing nonlinear dynamics of units and the complex interacting networks among them serves the base for the understanding of a variety of collective dynamical phenomena. I present a general method to address the two outstanding problems as a whole based solely on time-series measurements. The method is implemented by incorporating compressive sensing approach that enables an accurate reconstruction of complex dynamical systems in terms of both nodal equations that determines the self-dynamics of units and detailed coupling patterns among units. The representative advantages of the approach are (i) the sparse data requirement which allows for a successful reconstruction from limited measurements, and (ii) general applicability to identical and nonidentical nodal dynamics, and to networks with arbitrary interacting structure, strength and sizes. Another two challenging problem of significant interest in nonlinear dynamics: (i) predicting catastrophes in nonlinear dynamical systems in advance of their occurrences and (ii) predicting the future state for time-varying nonlinear dynamical systems, can be formulated and solved in the framework of compressive sensing using only limited measurements. Once the network structure can be inferred, the dynamics behavior on them can be investigated, for example optimize information spreading dynamics, suppress cascading dynamics and traffic congestion, enhance synchronization, game dynamics, etc. The results can yield insights to control strategies design in the real-world social and natural systems. Since 2004, there has been a tremendous amount of interest in graphene. The most amazing feature of graphene is that there exists linear energy-momentum relationship when energy is low. The quasi-particles inside the system can be treated as chiral, massless Dirac fermions obeying relativistic quantum mechanics. Therefore, the graphene provides one perfect test bed to investigate relativistic quantum phenomena, such as relativistic quantum chaotic scattering and abnormal electron paths induced by klein tunneling. This phenomenon has profound implications to the development of graphene based devices that require stable electronic properties.
ContributorsYang, Rui (Author) / Lai, Ying-Cheng (Thesis advisor) / Duman, Tolga M. (Committee member) / Akis, Richard (Committee member) / Huang, Liang (Committee member) / Arizona State University (Publisher)
Created2012
151230-Thumbnail Image.png
Description
What can classical chaos do to quantum systems is a fundamental issue highly relevant to a number of branches in physics. The field of quantum chaos has been active for three decades, where the focus was on non-relativistic quantumsystems described by the Schr¨odinger equation. By developing an efficient method to

What can classical chaos do to quantum systems is a fundamental issue highly relevant to a number of branches in physics. The field of quantum chaos has been active for three decades, where the focus was on non-relativistic quantumsystems described by the Schr¨odinger equation. By developing an efficient method to solve the Dirac equation in the setting where relativistic particles can tunnel between two symmetric cavities through a potential barrier, chaotic cavities are found to suppress the spread in the tunneling rate. Tunneling rate for any given energy assumes a wide range that increases with the energy for integrable classical dynamics. However, for chaotic underlying dynamics, the spread is greatly reduced. A remarkable feature, which is a consequence of Klein tunneling, arise only in relativistc quantum systems that substantial tunneling exists even for particle energy approaching zero. Similar results are found in graphene tunneling devices, implying high relevance of relativistic quantum chaos to the development of such devices. Wave propagation through random media occurs in many physical systems, where interesting phenomena such as branched, fracal-like wave patterns can arise. The generic origin of these wave structures is currently a matter of active debate. It is of fundamental interest to develop a minimal, paradigmaticmodel that can generate robust branched wave structures. In so doing, a general observation in all situations where branched structures emerge is non-Gaussian statistics of wave intensity with an algebraic tail in the probability density function. Thus, a universal algebraic wave-intensity distribution becomes the criterion for the validity of any minimal model of branched wave patterns. Coexistence of competing species in spatially extended ecosystems is key to biodiversity in nature. Understanding the dynamical mechanisms of coexistence is a fundamental problem of continuous interest not only in evolutionary biology but also in nonlinear science. A continuous model is proposed for cyclically competing species and the effect of the interplay between the interaction range and mobility on coexistence is investigated. A transition from coexistence to extinction is uncovered with a non-monotonic behavior in the coexistence probability and switches between spiral and plane-wave patterns arise. Strong mobility can either promote or hamper coexistence, while absent in lattice-based models, can be explained in terms of nonlinear partial differential equations.
ContributorsNi, Xuan (Author) / Lai, Ying-Cheng (Thesis advisor) / Huang, Liang (Committee member) / Yu, Hongbin (Committee member) / Akis, Richard (Committee member) / Arizona State University (Publisher)
Created2012
137601-Thumbnail Image.png
Description
Thirty six percent of Americans are obese and thirty three percent are overweight; obesity has become a known killer in the U.S. yet its prevalence has maintained a firm grasp on the U.S. population and continues to spread across the globe as other countries slowly adopt the American lifestyle. A

Thirty six percent of Americans are obese and thirty three percent are overweight; obesity has become a known killer in the U.S. yet its prevalence has maintained a firm grasp on the U.S. population and continues to spread across the globe as other countries slowly adopt the American lifestyle. A survey was compiled collecting demographic and body mass index (BMI) information, as well as Tanofsky-Kraff’s (2009) “Assess Eating in the Absence of Hunger” survey questions. The survey used for this study was emailed out to Arizona State University students in Barrett, The Honors College, and the ASU School of Nutrition and Health Promotion listservs. A total of 457 participants completed the survey, 72 males and 385 females (mean age, 24.5±7.7 y; average body mass index (BMI), 23.4 ± 4.8 [a BMI of 25-29.9 is classified as overweight]). When comparing BMI with the living situation, 71% of obese students were living at home with family versus off campus with friends or alone. For comparison, 45% of normal weight students lived at home with family.  These data could help structure prevention plans targeting college students by focusing on weight gain prevention at the family level. Results from the Tanofsky-Kraff (2009) survey revealed there was not a significant relationship between external or physical cues and BMI in men or women, but there was a significant positive correlation between emotional cues and BMI in women only. Anger and sadness were the emotional cues in women related to initiating consumption past satiation and consumption following several hours of fasting. Although BMI was inversely related to physical activity in this sample (r = -0.132; p=0.005), controlling for physical activity did not impact the significant associations of BMI with anger or sadness (P>0.05).  This information is important in targeting prevention programs to address behavioral change and cognitive awareness of the effects of emotion on over-consumption.
ContributorsGarza, Andrea Marie (Author) / Johnston, Carol (Thesis director) / Jacobs, Mark (Committee member) / Coletta, Dawn (Committee member) / Barrett, The Honors College (Contributor) / Department of Psychology (Contributor) / School of Life Sciences (Contributor)
Created2013-05
137286-Thumbnail Image.png
Description
New-onset diabetes after kidney transplantation (NODAT) occurs in 20% of kidney transplant patients. In 5 patients who are at risk for new-onset diabetes after kidney transplantation, skeletal muscle gene expression profiling was performed both before and after kidney transplant. The differences in gene expression before and after transplant were compared

New-onset diabetes after kidney transplantation (NODAT) occurs in 20% of kidney transplant patients. In 5 patients who are at risk for new-onset diabetes after kidney transplantation, skeletal muscle gene expression profiling was performed both before and after kidney transplant. The differences in gene expression before and after transplant were compared in order to identify specific genes that could be linked to developing NODAT. These findings could open new avenues for future research.
ContributorsLowery, Clint Curtis (Author) / Coletta, Dawn (Thesis director) / Katsanos, Christos (Committee member) / Willis, Wayne (Committee member) / Barrett, The Honors College (Contributor) / Department of Chemistry and Biochemistry (Contributor) / W. P. Carey School of Business (Contributor)
Created2014-05
137400-Thumbnail Image.png
Description
DNA methylation, a subset of epigenetics, has been found to be a significant marker associated with variations in gene expression and activity across the entire human genome. As of now, however, there is little to no information about how DNA methylation varies between different tissues inside a singular person's body.

DNA methylation, a subset of epigenetics, has been found to be a significant marker associated with variations in gene expression and activity across the entire human genome. As of now, however, there is little to no information about how DNA methylation varies between different tissues inside a singular person's body. By using research data from a preliminary study of lean and obese clinical subjects, this study attempts to put together a profile of the differences in DNA methylation that can be observed between two particular body tissues from this subject group: blood and skeletal muscle. This study allows us to start describing the changes that occur at the epigenetic level that influence how differently these two tissues operate, along with seeing how these tissues change between individuals of different weight classes, especially in the context of the development of symptoms of Type 2 Diabetes.
ContributorsRappazzo, Micah Gabriel (Author) / Coletta, Dawn (Thesis director) / Katsanos, Christos (Committee member) / Dinu, Valentin (Committee member) / Barrett, The Honors College (Contributor) / Harrington Bioengineering Program (Contributor) / Department of Psychology (Contributor)
Created2013-12
148480-Thumbnail Image.png
Description

Members of the Delphinidae family are widely distributed across the world’s oceans. We used a viral metagenomic approach to identify viruses in orca (Orcinus orca) and short-finned pilot whale (Globicephala macrorhynchus) muscle, kidney, and liver samples from deceased animals. From orca tissue samples (muscle, kidney, and liver), we identified a

Members of the Delphinidae family are widely distributed across the world’s oceans. We used a viral metagenomic approach to identify viruses in orca (Orcinus orca) and short-finned pilot whale (Globicephala macrorhynchus) muscle, kidney, and liver samples from deceased animals. From orca tissue samples (muscle, kidney, and liver), we identified a novel polyomavirus (Polyomaviridae), three cressdnaviruses, and two genomoviruses (Genomoviridae). In the short-finned pilot whale we were able to identify one genomovirus in a kidney sample. The presence of unclassified cressdnavirus within two samples (muscle and kidney) of the same animal supports the possibility these viruses might be widespread within the animal. The orca polyomavirus identified here is the first of its species and is not closely related to the only other dolphin polyomavirus previously discovered. The identification and verification of these viruses expands the current knowledge of viruses that are associated with the Delphinidae family.

ContributorsSmith, Kendal Ryan (Author) / Varsani, Arvind (Thesis director) / Kraberger, Simona (Committee member) / Dolby, Greer (Committee member) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
131078-Thumbnail Image.png
Description
Phage therapy has been around for more than a century, but has regained interest in the field of medicine and holds significant potential to act as a treatment against a deadly bacterial infection in various cactus species. It was discovered that bacteriophages isolated from soil samples of potato plants were

Phage therapy has been around for more than a century, but has regained interest in the field of medicine and holds significant potential to act as a treatment against a deadly bacterial infection in various cactus species. It was discovered that bacteriophages isolated from soil samples of potato plants were able to suppress Pectobacterium carotovorum, ‘Pectobacterium’ being within the family Pectobacteriaceae which contains the ‘Erwinia’ genus that causes soft rot diseases in various plants (Jones, 2012). The two scientists had co-inoculated “... the phage with the phytobacterium” (Jones, 2012) in order to suppress the growth and prevent the infection from occurring.
ContributorsFry, Danielle Elizabeth (Author) / Geiler-Samerotte, Kerry (Thesis director) / Pfeifer, Susanne (Committee member) / Varsani, Arvind (Committee member) / College of Health Solutions (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05