Matching Items (158)
150030-Thumbnail Image.png
Description
The elaborate signals of animals are often costly to produce and maintain, thus communicating reliable information about the quality of an individual to potential mates or competitors. The properties of the sensory systems that receive signals can drive the evolution of these signals and shape their form and function. However,

The elaborate signals of animals are often costly to produce and maintain, thus communicating reliable information about the quality of an individual to potential mates or competitors. The properties of the sensory systems that receive signals can drive the evolution of these signals and shape their form and function. However, relatively little is known about the ecological and physiological constraints that may influence the development and maintenance of sensory systems. In the house finch (Carpodacus mexicanus) and many other bird species, carotenoid pigments are used to create colorful sexually selected displays, and their expression is limited by health and dietary access to carotenoids. Carotenoids also accumulate in the avian retina, protecting it from photodamage and tuning color vision. Analogous to plumage carotenoid accumulation, I hypothesized that avian vision is subject to environmental and physiological constraints imposed by the acquisition and allocation of carotenoids. To test this hypothesis, I carried out a series of field and captive studies of the house finch to assess natural variation in and correlates of retinal carotenoid accumulation and to experimentally investigate the effects of dietary carotenoid availability, immune activation, and light exposure on retinal carotenoid accumulation. Moreover, through dietary manipulations of retinal carotenoid accumulation, I tested the impacts of carotenoid accumulation on visually mediated foraging and mate choice behaviors. My results indicate that avian retinal carotenoid accumulation is variable and significantly influenced by dietary carotenoid availability and immune system activity. Behavioral studies suggest that retinal carotenoid accumulation influences visual foraging performance and mediates a trade-off between color discrimination and photoreceptor sensitivity under dim-light conditions. Retinal accumulation did not influence female choice for male carotenoid-based coloration, indicating that a direct link between retinal accumulation and sexual selection for coloration is unlikely. However, retinal carotenoid accumulation in males was positively correlated with their plumage coloration. Thus, carotenoid-mediated visual health and performance or may be part of the information encoded in sexually selected coloration.
ContributorsToomey, Matthew (Author) / McGraw, Kevin J. (Thesis advisor) / Deviche, Pierre (Committee member) / Smith, Brian (Committee member) / Rutowski, Ronald (Committee member) / Verrelli, Brian (Committee member) / Arizona State University (Publisher)
Created2011
147855-Thumbnail Image.png
Description

Background: The purpose of this study was to assess the efficacy of a lifestyle intervention on cardiorespiratory fitness in Latino youth with obesity and prediabetes. <br/>Methods: Participants (n=50) in this study were taken from a larger randomized controlled trial (n=180, BMI ≥ 95th percentile). Youth participated in a 6-month lifestyle

Background: The purpose of this study was to assess the efficacy of a lifestyle intervention on cardiorespiratory fitness in Latino youth with obesity and prediabetes. <br/>Methods: Participants (n=50) in this study were taken from a larger randomized controlled trial (n=180, BMI ≥ 95th percentile). Youth participated in a 6-month lifestyle intervention that included physical activity (60 minutes, 3x/week) and nutrition and wellness classes (60 minutes, 1x/week) delivered to families at the Lincoln Family YMCA in Downtown Phoenix. The primary outcome was cardiorespiratory fitness measured at baseline and post-intervention.<br/>Results: The mean BMI for the sample was 33.17 ± 4.54 kg/m2, which put the participants in the 98.4th percentile. At baseline, the mean VO2max was 2737.02 ± 488.89 mL/min. The mean relative VO2max was 30.65 ± 3.87 mL/kg/min. VO2max values significantly increased from baseline to post-intervention (2737.022 ± 483.977 mL/min vs 2932.654 ± 96.062 mL/min, p<0.001). <br/>Conclusion: Culturally-grounded, family-focused lifestyle interventions are a promising approach for improving cardiorespiratory fitness in high-risk youth at risk for diabetes.

ContributorsEstrada, Lourdes Alexa (Author) / Shaibi, Gabriel (Thesis director) / Peña, Armando (Committee member) / College of Health Solutions (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
149812-Thumbnail Image.png
Description
Patients with Alzheimer's disease (AD) exhibit a significantly higher incidence of unprovoked seizures compared to age-matched non-AD controls, and animal models of AD (i.e., transgenic human amyloid precursor protein, hAPP mice) display neural hyper-excitation and epileptic seizures. Hyperexcitation is particularly important because it contributes to the high incidence of epilepsy

Patients with Alzheimer's disease (AD) exhibit a significantly higher incidence of unprovoked seizures compared to age-matched non-AD controls, and animal models of AD (i.e., transgenic human amyloid precursor protein, hAPP mice) display neural hyper-excitation and epileptic seizures. Hyperexcitation is particularly important because it contributes to the high incidence of epilepsy in AD patients as well as AD-related synaptic deficits and neurodegeneration. Given that there is significant amyloid-β (Aβ) accumulation and deposition in AD brain, Aβ exposure ultimately may be responsible for neural hyper-excitation in both AD patients and animal models. Emerging evidence indicates that α7 nicotinic acetylcholine receptors (α7-nAChR) are involved in AD pathology, because synaptic impairment and learning and memory deficits in a hAPPα7-/- mouse model are decreased by nAChR α7 subunit gene deletion. Given that Aβ potently modulates α7-nAChR function, that α7-nAChR expression is significantly enhanced in both AD patients and animal models, and that α7-nAChR play an important role in regulating neuronal excitability, it is reasonable that α7-nAChRs may contribute to Aβ-induced neural hyperexcitation. We hypothesize that increased α7-nAChR expression and function as a consequence of Aβ exposure is important in Aβ-induced neural hyperexcitation. In this project, we found that exposure of Aβ aggregates at a nanomolar range induces neuronal hyperexcitation and toxicity via an upregulation of α7-nAChR in cultured hippocampus pyramidal neurons. Aβ up-regulates α7-nAChRs function and expression through a post translational mechanism. α7-nAChR up-regulation occurs prior to Aβ-induced neuronal hyperexcitation and toxicity. Moreover, inhibition of α7-nAChR or deletion of α7-nAChR prevented Aβ induced neuronal hyperexcitation and toxicity, which suggests that α7-nAChRs are required for Aβ induced neuronal hyperexcitation and toxicity. These results reveal a profound role for α7-nAChR in mediating Aβ-induced neuronal hyperexcitation and toxicity and predict that Aβ-induced up-regulation of α7-nAChR could be an early and critical event in AD etiopathogenesis. Drugs targeting α7-nAChR or seizure activity could be viable therapies for AD treatment.
ContributorsLiu, Qiang (Author) / Wu, Jie (Thesis advisor) / Lukas, Ronald J (Committee member) / Chang, Yongchang (Committee member) / Sierks, Michael (Committee member) / Smith, Brian (Committee member) / Vu, Eric (Committee member) / Arizona State University (Publisher)
Created2011
150128-Thumbnail Image.png
Description
Obesity in Hispanic youth has reached alarmingly high levels, increasing the risk of type 2 diabetes, hyperlipidemia, hypertension, and cardiovascular disease. In Mexican American children ages 6-11 years, 41.7% are overweight and obese, 24.7% are obese and 19.6% have a Body Mass Index (BMI) greater than the 97th percentile. While

Obesity in Hispanic youth has reached alarmingly high levels, increasing the risk of type 2 diabetes, hyperlipidemia, hypertension, and cardiovascular disease. In Mexican American children ages 6-11 years, 41.7% are overweight and obese, 24.7% are obese and 19.6% have a Body Mass Index (BMI) greater than the 97th percentile. While personal, behavioral, and environmental factors contribute to these high rates, emerging literature suggests acculturation, self-efficacy and social support are key influences. The one-group, pre- and post-test, quasi-experimental design used a community-based participatory research (CBPR) method to test the feasibility, acceptability, and preliminary efficacy of the 8-week intervention. Social Cognitive Theory (SCT) was used to guide the design. Measurements included an analysis of recruitment, retention, participant satisfaction, observation of intervention sessions, paired t-tests, effect sizes, and bivariate correlations between study variables (acculturation, nutrition and physical activity [PA] knowledge, attitude and behaviors, perceived confidence and social support) and outcome variables (BMI z-score, waist circumference and BP percentile) Findings showed the SSLN program was feasible and acceptable. Participants (n = 16) reported that the curriculum was fun and they learned about nutrition and PA. The retention rate was 94%. The preliminary effects on adolescent nutrition and PA behaviors showed mixed results with small-to-medium effect sizes for nutrition knowledge and attitude, PA and sedentary behavior. Correlation analysis among acculturation and study variables was not significant. Positive associations were found between perceived confidence in eating and nutrition attitude (r = .61, p < .05) and nutrition behavior (r = .62, p < .05), perceived confidence in exercise and nutrition behavior (r = .66, p < .05), social support from family for exercise and PA behavior (r = .67, p < .01) and social support from friends for exercise and PA behavior (r = .56, p < .05). These findings suggest a culturally specific healthy eating and activity program for adolescents was feasible and acceptable and warrants further investigation, since it may fill a gap in existing obesity programs designed for Hispanic youth. The positive correlations suggest further testing of the theoretical model.
ContributorsStevens, Carol (Author) / Gance-Cleveland, Bonnie (Thesis advisor) / Komnenich, Pauline (Committee member) / Shaibi, Gabriel (Committee member) / Arcoleo, Kimberly (Committee member) / Arizona State University (Publisher)
Created2011
151598-Thumbnail Image.png
Description
Cardiovascular disease (CVD) is the number one cause of death in the United States and type 2 diabetes (T2D) and obesity lead to cardiovascular disease. Obese adults are more susceptible to CVD compared to their non-obese counterparts. Exercise training leads to large reductions in the risk of CVD and T2D.

Cardiovascular disease (CVD) is the number one cause of death in the United States and type 2 diabetes (T2D) and obesity lead to cardiovascular disease. Obese adults are more susceptible to CVD compared to their non-obese counterparts. Exercise training leads to large reductions in the risk of CVD and T2D. Recent evidence suggests high-intensity interval training (HIT) may yield similar or superior benefits in a shorter amount of time compared to traditional continuous exercise training. The purpose of this study was to compare the effects of HIT to continuous (CONT) exercise training for the improvement of endothelial function, glucose control, and visceral adipose tissue. Seventeen obese men (N=9) and women (N=8) were randomized to eight weeks of either HIT (N=9, age=34 years, BMI=37.6 kg/m2) or CONT (N=8, age=34 years, BMI=34.6 kg/m2) exercise 3 days/week for 8 weeks. Endothelial function was assessed via flow-mediated dilation (FMD), glucose control was assessed via continuous glucose monitoring (CGM), and visceral adipose tissue and body composition was measured with an iDXA. Incremental exercise testing was performed at baseline, 4 weeks, and 8 weeks. There were no changes in weight, fat mass, or visceral adipose tissue measured by the iDXA, but there was a significant reduction in body fat that did not differ by group (46±6.3 to 45.4±6.6%, P=0.025). HIT led to a significantly greater improvement in FMD compared to CONT exercise (HIT: 5.1 to 9.0%; CONT: 5.0 to 2.6%, P=0.006). Average 24-hour glucose was not improved over the whole group and there were no group x time interactions for CGM data (HIT: 103.9 to 98.2 mg/dl; CONT: 99.9 to 100.2 mg/dl, P>0.05). When statistical analysis included only the subjects who started with an average glucose at baseline > 100 mg/dl, there was a significant improvement in glucose control overall, but no group x time interaction (107.8 to 94.2 mg/dl, P=0.027). Eight weeks of HIT led to superior improvements in endothelial function and similar improvements in glucose control in obese subjects at risk for T2D and CVD. HIT was shown to have comparable or superior health benefits in this obese sample with a 36% lower total exercise time commitment.
ContributorsSawyer, Brandon J (Author) / Gaesser, Glenn A (Thesis advisor) / Shaibi, Gabriel (Committee member) / Lee, Chong (Committee member) / Swan, Pamela (Committee member) / Buman, Matthew (Committee member) / Arizona State University (Publisher)
Created2013
151604-Thumbnail Image.png
Description
Purpose: The purpose of this study was to examine the acute effects of two novel intermittent exercise prescriptions on glucose regulation and ambulatory blood pressure. Methods: Ten subjects (5 men and 5 women, ages 31.5 ± 5.42 yr, height 170.38 ± 9.69 cm and weight 88.59 ± 18.91 kg) participated

Purpose: The purpose of this study was to examine the acute effects of two novel intermittent exercise prescriptions on glucose regulation and ambulatory blood pressure. Methods: Ten subjects (5 men and 5 women, ages 31.5 ± 5.42 yr, height 170.38 ± 9.69 cm and weight 88.59 ± 18.91 kg) participated in this four-treatment crossover trial. All subjects participated in four trials, each taking place over three days. On the evening of the first day, subjects were fitted with a continuous glucose monitor (CGM). On the second day, subjects were fitted with an ambulatory blood pressure monitor (ABP) and underwent one of the following four conditions in a randomized order: 1) 30-min: 30 minutes of continuous exercise at 60 - 70% VO2peak; 2) Mod 2-min: twenty-one 2-min bouts of walking at 3 mph performed once every 20 minutes; 3) HI 2-min: eight 2-min bouts of walking at maximal incline performed once every hour; 4) Control: a no exercise control condition. On the morning of the third day, the CGM and ABP devices were removed. All meals were standardized during the study visits. Linear mixed models were used to compare mean differences in glucose and blood pressure regulation between the four trials. Results: Glucose concentrations were significantly lower following the 30-min (91.1 ± 14.9 mg/dl), Mod 2-min (93.7 ± 19.8 mg/dl) and HI 2-min (96.1 ± 16.4 mg/dl) trials as compared to the Control (101.1 ± 20 mg/dl) (P < 0.001 for all three comparisons). The 30-min trial was superior to the Mod 2-min, which was superior to the HI 2-min trial in lowering blood glucose levels (P < 0.001 and P = 0.003 respectively). Only the 30-min trial was effective in lowering systolic ABP (124 ± 12 mmHg) as compared to the Control trial (127 ± 14 mmHg; P < 0.001) for up to 11 hours post exercise. Conclusion: Performing frequent short (i.e., 2 minutes) bouts of moderate or high intensity exercise may be a viable alternative to traditional continuous exercise in improving glucose regulation. However, 2-min bouts of exercise are not effective in reducing ambulatory blood pressure in healthy adults.
ContributorsBhammar, Dharini Mukeshkumar (Author) / Gaesser, Glenn A (Thesis advisor) / Shaibi, Gabriel (Committee member) / Buman, Matthew (Committee member) / Swan, Pamela (Committee member) / Lee, Chong (Committee member) / Arizona State University (Publisher)
Created2013
152247-Thumbnail Image.png
Description
Surface plasmon resonance (SPR) has emerged as a popular technique for elucidating subtle signals from biological events in a label-free, high throughput environment. The efficacy of conventional SPR sensors, whose signals are mass-sensitive, diminishes rapidly with the size of the observed target molecules. The following work advances the current SPR

Surface plasmon resonance (SPR) has emerged as a popular technique for elucidating subtle signals from biological events in a label-free, high throughput environment. The efficacy of conventional SPR sensors, whose signals are mass-sensitive, diminishes rapidly with the size of the observed target molecules. The following work advances the current SPR sensor paradigm for the purpose of small molecule detection. The detection limits of two orthogonal components of SPR measurement are targeted: speed and sensitivity. In the context of this report, speed refers to the dynamic range of measured kinetic rate constants, while sensitivity refers to the target molecule mass limitation of conventional SPR measurement. A simple device for high-speed microfluidic delivery of liquid samples to a sensor surface is presented to address the temporal limitations of conventional SPR measurement. The time scale of buffer/sample switching is on the order of milliseconds, thereby minimizing the opportunity for sample plug dispersion. The high rates of mass transport to and from the central microfluidic sensing region allow for SPR-based kinetic analysis of binding events with dissociation rate constants (kd) up to 130 s-1. The required sample volume is only 1 μL, allowing for minimal sample consumption during high-speed kinetic binding measurement. Charge-based detection of small molecules is demonstrated by plasmonic-based electrochemical impedance microscopy (P-EIM). The dependence of surface plasmon resonance (SPR) on surface charge density is used to detect small molecules (60-120 Da) printed on a dextran-modified sensor surface. The SPR response to an applied ac potential is a function of the surface charge density. This optical signal is comprised of a dc and an ac component, and is measured with high spatial resolution. The amplitude and phase of local surface impedance is provided by the ac component. The phase signal of the small molecules is a function of their charge status, which is manipulated by the pH of a solution. This technique is used to detect and distinguish small molecules based on their charge status, thereby circumventing the mass limitation (~100 Da) of conventional SPR measurement.
ContributorsMacGriff, Christopher Assiff (Author) / Tao, Nongjian (Thesis advisor) / Wang, Shaopeng (Committee member) / LaBaer, Joshua (Committee member) / Chae, Junseok (Committee member) / Arizona State University (Publisher)
Created2013
152248-Thumbnail Image.png
Description
Background: Evidence about the purported hypoglycemic and hypolipidemic effects of nopales (prickly pear cactus pads) is limited. Objective: To evaluate the efficacy of nopales for improving cardiometabolic risk factors and oxidative stress, compared to control, in adults with hypercholesterolemia. Design: In a randomized crossover trial, participants were assigned to a

Background: Evidence about the purported hypoglycemic and hypolipidemic effects of nopales (prickly pear cactus pads) is limited. Objective: To evaluate the efficacy of nopales for improving cardiometabolic risk factors and oxidative stress, compared to control, in adults with hypercholesterolemia. Design: In a randomized crossover trial, participants were assigned to a 2-wk intervention with 2 cups/day of nopales or cucumbers (control), with a 2 to 3-wk washout period. The study included 16 adults (5 male; 46±14 y; BMI = 31.4±5.7 kg/m2) with moderate hypercholesterolemia (low density lipoprotein cholesterol [LDL-c] = 137±21 mg/dL), but otherwise healthy. Main outcomes measured included: dietary intake (energy, macronutrients and micronutrients), cardiometabolic risk markers (total cholesterol, LDL-c, high density lipoprotein cholesterol [HDL-c], triglycerides, cholesterol distribution in LDL and HDL subfractions, glucose, insulin, homeostasis model assessment, and C-reactive protein), and oxidative stress markers (vitamin C, total antioxidant capacity, oxidized LDL, and LDL susceptibility to oxidation). Effects of treatment, time, or interactions were assessed using repeated measures ANOVA. Results: There was no significant treatment-by-time effect for any dietary composition data, lipid profile, cardiometabolic outcomes, or oxidative stress markers. A significant time effect was observed for energy, which was decreased in both treatments (cucumber, -8.3%; nopales, -10.1%; pTime=0.026) mostly due to lower mono and polyunsaturated fatty acids intake (pTime=0.023 and pTime=0.003, respectively). Both treatments significantly increased triglyceride concentrations (cucumber, 14.8%; nopales, 15.2%; pTime=0.020). Despite the lack of significant treatment-by-time effects, great individual response variability was observed for all outcomes. After the cucumber and nopales phases, a decrease in LDL-c was observed in 44% and 63% of the participants respectively. On average LDL-c was decreased by 2.0 mg/dL (-1.4%) after the cucumber phase and 3.9 mg/dL (-2.9%) after the nopales phase (pTime=0.176). Pro-atherogenic changes in HDL subfractions were observed in both interventions over time, by decreasing the proportion of HDL-c in large HDL (cucumber, -5.1%; nopales, -5.9%; pTime=0.021) and increasing the proportion in small HDL (cucumber, 4.1%; nopales, 7.9%; pTime=0.002). Conclusions: These data do not support the purported benefits of nopales at doses of 2 cups/day for 2-wk on markers of lipoprotein profile, cardiometabolic risk, and oxidative stress in hypercholesterolemic adults.
ContributorsPereira Pignotti, Giselle Adriana (Author) / Vega-Lopez, Sonia (Thesis advisor) / Gaesser, Glenn (Committee member) / Keller, Colleen (Committee member) / Shaibi, Gabriel (Committee member) / Sweazea, Karen (Committee member) / Arizona State University (Publisher)
Created2013
152186-Thumbnail Image.png
Description
Specific dendritic morphologies are a hallmark of neuronal identity, circuit assembly, and behaviorally relevant function. Despite the importance of dendrites in brain health and disease, the functional consequences of dendritic shape remain largely unknown. This dissertation addresses two fundamental and interrelated aspects of dendrite neurobiology. First, by utilizing the genetic

Specific dendritic morphologies are a hallmark of neuronal identity, circuit assembly, and behaviorally relevant function. Despite the importance of dendrites in brain health and disease, the functional consequences of dendritic shape remain largely unknown. This dissertation addresses two fundamental and interrelated aspects of dendrite neurobiology. First, by utilizing the genetic power of Drosophila melanogaster, these studies assess the developmental mechanisms underlying single neuron morphology, and subsequently investigate the functional and behavioral consequences resulting from developmental irregularity. Significant insights into the molecular mechanisms that contribute to dendrite development come from studies of Down syndrome cell adhesion molecule (Dscam). While these findings have been garnered primarily from sensory neurons whose arbors innervate a two-dimensional plane, it is likely that the principles apply in three-dimensional central neurons that provide the structural substrate for synaptic input and neural circuit formation. As such, this dissertation supports the hypothesis that neuron type impacts the realization of Dscam function. In fact, in Drosophila motoneurons, Dscam serves a previously unknown cell-autonomous function in dendrite growth. Dscam manipulations produced a range of dendritic phenotypes with alteration in branch number and length. Subsequent experiments exploited the dendritic alterations produced by Dscam manipulations in order to correlate dendritic structure with the suggested function of these neurons. These data indicate that basic motoneuron function and behavior are maintained even in the absence of all adult dendrites within the same neuron. By contrast, dendrites are required for adjusting motoneuron responses to specific challenging behavioral requirements. Here, I establish a direct link between dendritic structure and neuronal function at the level of the single cell, thus defining the structural substrates necessary for conferring various aspects of functional motor output. Taken together, information gathered from these studies can inform the quest in deciphering how complex cell morphologies and networks form and are precisely linked to their function.
ContributorsHutchinson, Katie Marie (Author) / Duch, Carsten (Thesis advisor) / Neisewander, Janet (Thesis advisor) / Newfeld, Stuart (Committee member) / Smith, Brian (Committee member) / Orchinik, Miles (Committee member) / Arizona State University (Publisher)
Created2013
152014-Thumbnail Image.png
Description
Olfaction is an important sensory modality for behavior since odors inform animals of the presence of food, potential mates, and predators. The fruit fly, Drosophila melanogaster, is a favorable model organism for the investigation of the biophysical mechanisms that contribute to olfaction because its olfactory system is anatomically similar to

Olfaction is an important sensory modality for behavior since odors inform animals of the presence of food, potential mates, and predators. The fruit fly, Drosophila melanogaster, is a favorable model organism for the investigation of the biophysical mechanisms that contribute to olfaction because its olfactory system is anatomically similar to but simpler than that of vertebrates. In the Drosophila olfactory system, sensory transduction takes place in olfactory receptor neurons housed in the antennae and maxillary palps on the front of the head. The first stage of olfactory processing resides in the antennal lobe, where the structural unit is the glomerulus. There are at least three classes of neurons in the antennal lobe - excitatory projection neurons, excitatory local neurons, and inhibitory local neurons. The arborizations of the local neurons are confined to the antennal lobe, and output from the antennal lobe is carried by projection neurons to higher regions of the brain. Different views exist of how circuits of the Drosophila antennal lobe translate input from the olfactory receptor neurons into projection neuron output. We construct a conductance based neuronal network model of the Drosophila antennal lobe with the aim of understanding possible mechanisms within the antennal lobe that account for the variety of projection neuron activity observed in experimental data. We explore possible outputs obtained from olfactory receptor neuron input that mimic experimental recordings under different connectivity paradigms. First, we develop realistic minimal cell models for the excitatory local neurons, inhibitory local neurons, and projections neurons based on experimental data for Drosophila channel kinetics, and explore the firing characteristics and mathematical structure of these models. We then investigate possible interglomerular and intraglomerular connectivity patterns in the Drosophila antennal lobe, where olfactory receptor neuron input to the antennal lobe is modeled with Poisson spike trains, and synaptic connections within the antennal lobe are mediated by chemical synapses and gap junctions as described in the Drosophila antennal lobe literature. Our simulation results show that inhibitory local neurons spread inhibition among all glomeruli, where projection neuron responses are decreased relatively uniformly for connections of synaptic strengths that are homogeneous. Also, in the case of homogeneous excitatory synaptic connections, the excitatory local neuron network facilitates odor detection in the presence of weak stimuli. Excitatory local neurons can spread excitation from projection neurons that receive more input from olfactory receptor neurons to projection neurons that receive less input from olfactory receptor neurons. For the parameter values for the network models associated with these results, eLNs decrease the ability of the network to discriminate among single odors.
ContributorsLuli, Dori (Author) / Crook, Sharon (Thesis advisor) / Baer, Steven (Committee member) / Castillo-Chavez, Carlos (Committee member) / Smith, Brian (Committee member) / Arizona State University (Publisher)
Created2013