Matching Items (65)
154576-Thumbnail Image.png
Description
Background: College freshmen are exposed to a variety of environmental and social factors that can alter changes to health habits and encourage weight gain. Weight-related conversations had with friends may be related to self-perception of weight and alterations to health behaviors, but this association has yet to be assessed in

Background: College freshmen are exposed to a variety of environmental and social factors that can alter changes to health habits and encourage weight gain. Weight-related conversations had with friends may be related to self-perception of weight and alterations to health behaviors, but this association has yet to be assessed in the college population.

Objective: This study aims to examine the relationship between friend advice about weight management, self-perception of weight, and alterations to weight change intentions, physical activity, and eating habits in college freshmen over time.

Methods: College freshmen from ASU with complete data for three time points (n=321) were found to be predominantly female (72.2%) and non-white (53.2%) with a mean age of 17.5±41. Complete data included responses for items included in analysis which were related to friend encouragement about weigh management, self-perception of weight, physical activity, eating behaviors, and weight change intentions. A longitudinal multivariate mediation analysis using negative binomial regression adjusted for sociodemographics and clustering by dorm was used to assess the relationship between 1) friend encouragement about weight management at time 1 and behavioral outcomes at time 3, 2) friend encouragement about weight management at time 1 and self-perception of weight at time 2, and 3) self-perception of weight at time 2 and behavioral outcomes at time 3.

Results: A small proportion of population perceived friend encouragement about weight loss (18.3%) and weight gain (14.4%) at time 1. Half the population (50.9%) had the self-perception of overweight at time 2. At time 3, more than half (54.3%) of individuals performed at least 60 minutes of MVPA and consumed at least ½ a serving of sugar-sweetened beverages each day, while nearly half (48.6%) consumed at least 2 servings of fruits and vegetables each day. Males perceived more friend encouragement to gain weight (27.4%; p<0.01), but more females had the self-perception of overweight (54%; p=0.04) and were attempting to lose weight (59.3%; p<0.01). Individuals who perceived friend encouragement to lose weight at time 1 had a 14.8% greater prevalence (p<0.001) of overweight perception of time two, and a 9.6% and 6.9%; decreased prevalence (p<0.001) of weight change and weight loss intentions (p=0.023) at time three respectively. Individuals who perceived friend encouragement to gain weight had a 34.9% decreased prevalence of (p<0.001) of self-perception of overweight at time 1. In individuals with the self-perception of overweight at time 2, there was a 18.1% increased prevalence (p<0.001) of consuming at least ½ a serving of sugar-sweetened beverages/day and an increased prevalence of 22.8% and 24.0% for weight change intentions and weight loss intentions at time 3 (p<0.001).

Conclusion: These findings suggest that there was not a mediation effect of self-perception of overweight in the relationship between friend encouragement about weight management and behavioral outcomes in the current sample. However, the increased prevalence of overweight perception in individuals who perceived friend encouragement about weight management may inform future interventions to focus on how weight-related conversations with friends is related to overweight perception. More research about the relationship between weight-related conversations had with friends, self-perception of weight, and health behaviors is needed to confirm these findings.
ContributorsThibodeau, Tristan (Author) / Bruening, Meg (Thesis advisor) / Ohri-Vachaspati, Punam (Committee member) / Huberty, Jennifer (Committee member) / Arizona State University (Publisher)
Created2016
156088-Thumbnail Image.png
Description
Obesity impairs skeletal muscle maintenance and regeneration, a condition that can progressively lead to muscle loss, but the mechanisms behind it are unknown. Muscle is primarily composed of multinucleated cells called myotubes which are derived by the fusion of mononucleated myocytes. A key mediator in this process is the cellular

Obesity impairs skeletal muscle maintenance and regeneration, a condition that can progressively lead to muscle loss, but the mechanisms behind it are unknown. Muscle is primarily composed of multinucleated cells called myotubes which are derived by the fusion of mononucleated myocytes. A key mediator in this process is the cellular fusion protein syncytin-1. This led to the hypothesis that syncytin-1 could be decreased in the muscle of obese/insulin resistant individuals. In contrast, it was found that obese/insulin resistant subjects had higher syncytin-1 expression in the muscle compared to that of the lean subjects. Across the subjects, syncytin-1 correlated significantly with body mass index, percent body fat, blood glucose and HbA1c levels, insulin sensitivity and muscle protein fractional synthesis rate. The concentrations of specific plasma fatty acids, such as the saturated fatty acid (palmitate) and monounsaturated fatty acid (oleate) are known to be altered in obese/insulin resistant humans, and also to influence the protein synthesis in muscle. Therefore, it was evaluated that the effects of palmitate and oleate on syncytin-1 expression, as well as 4E-BP1 phosphorylation, a key mechanism regulating muscle protein synthesis in insulin stimulated C2C12 myotubes. The results showed that treatment with 20 nM insulin, 300 µM oleate, 300 µM oleate +20 nM insulin and 300 µM palmitate + 300 µM oleate elevated 4E-BP1 phosphorylation. At the same time, 20 nM insulin, 300 µM palmitate, 300 µM oleate + 20 nM insulin and 300 µM palmitate + 300 µM oleate elevated syncytin-1 expression. Insulin stimulated muscle syncytin-1 expression and 4E-BP1 phosphorylation, and this effect was comparable to that observed in the presence of oleate alone. However, the presence of palmitate + oleate diminished the stimulatory effect of insulin on muscle syncytin-1 expression and 4E-BP1 phosphorylation. These findings indicate oleate but not palmitate increased total 4E-BP1 phosphorylation regardless of insulin and the presence of palmitate in insulin mediated C2C12 cells. The presence of palmitate inhibited the upregulation of total 4EB-P1 phosphorylation. Palmitate but not oleate increased syncytin-1 expression in insulin mediated C2C12 myotubes. It is possible that chronic hyperinsulinemia in obesity and/or elevated levels of fatty acids such as palmitate in plasma could have contributed to syncytin-1 overexpression and decreased muscle protein fractional synthesis rate in obese/insulin resistant human muscle.
ContributorsRavichandran, Jayachandran (Author) / Katsanos, Christos (Thesis advisor) / Coletta, Dawn (Committee member) / Dickinson, Jared (Committee member) / Arizona State University (Publisher)
Created2017
128096-Thumbnail Image.png
Description

The objective of the Indianapolis Flux Experiment (INFLUX) is to develop, evaluate and improve methods for measuring greenhouse gas (GHG) emissions from cities. INFLUX’s scientific objectives are to quantify CO2 and CH4 emission rates at 1 km2 resolution with a 10% or better accuracy and precision, to determine whole-city emissions

The objective of the Indianapolis Flux Experiment (INFLUX) is to develop, evaluate and improve methods for measuring greenhouse gas (GHG) emissions from cities. INFLUX’s scientific objectives are to quantify CO2 and CH4 emission rates at 1 km2 resolution with a 10% or better accuracy and precision, to determine whole-city emissions with similar skill, and to achieve high (weekly or finer) temporal resolution at both spatial resolutions. The experiment employs atmospheric GHG measurements from both towers and aircraft, atmospheric transport observations and models, and activity-based inventory products to quantify urban GHG emissions. Multiple, independent methods for estimating urban emissions are a central facet of our experimental design. INFLUX was initiated in 2010 and measurements and analyses are ongoing. To date we have quantified urban atmospheric GHG enhancements using aircraft and towers with measurements collected over multiple years, and have estimated whole-city CO2 and CH4 emissions using aircraft and tower GHG measurements, and inventory methods. Significant differences exist across methods; these differences have not yet been resolved; research to reduce uncertainties and reconcile these differences is underway. Sectorally- and spatially-resolved flux estimates, and detection of changes of fluxes over time, are also active research topics. Major challenges include developing methods for distinguishing anthropogenic from biogenic CO2 fluxes, improving our ability to interpret atmospheric GHG measurements close to urban GHG sources and across a broader range of atmospheric stability conditions, and quantifying uncertainties in inventory data products. INFLUX data and tools are intended to serve as an open resource and test bed for future investigations. Well-documented, public archival of data and methods is under development in support of this objective.

ContributorsDavis, Kenneth J. (Author) / Deng, Aijun (Author) / Lauvaux, Thomas (Author) / Miles, Natasha L. (Author) / Richardson, Scott J. (Author) / Sarmiento, Daniel P. (Author) / Gurney, Kevin (Author) / Hardesty, R. Michael (Author) / Bonin, Timothy A. (Author) / Brewer, W. Alan (Author) / Lamb, Brian K. (Author) / Shepson, Paul B. (Author) / Harvey, Rebecca M. (Author) / Cambaliza, Maria O. (Author) / Sweeney, Colm (Author) / Turnbull, Jocelyn C. (Author) / Whetstone, James (Author) / Karion, Anna (Author) / College of Liberal Arts and Sciences (Contributor)
Created2017-05-23
128791-Thumbnail Image.png
Description

Our previous studies show reduced abundance of the β-subunit of mitochondrial H+-ATP synthase (β-F1-ATPase) in skeletal muscle of obese individuals. The β-F1-ATPase forms the catalytic core of the ATP synthase, and it is critical for ATP production in muscle. The mechanism(s) impairing β-F1-ATPase metabolism in obesity, however, are not completely

Our previous studies show reduced abundance of the β-subunit of mitochondrial H+-ATP synthase (β-F1-ATPase) in skeletal muscle of obese individuals. The β-F1-ATPase forms the catalytic core of the ATP synthase, and it is critical for ATP production in muscle. The mechanism(s) impairing β-F1-ATPase metabolism in obesity, however, are not completely understood. First, we studied total muscle protein synthesis and the translation efficiency of β-F1-ATPase in obese (BMI, 36±1 kg/m2) and lean (BMI, 22±1 kg/m2) subjects. Both total protein synthesis (0.044±0.006 vs 0.066±0.006%·h-1) and translation efficiency of β-F1-ATPase (0.0031±0.0007 vs 0.0073±0.0004) were lower in muscle from the obese subjects when compared to the lean controls (P<0.05). We then evaluated these same responses in a primary cell culture model, and tested the specific hypothesis that circulating non-esterified fatty acids (NEFA) in obesity play a role in the responses observed in humans. The findings on total protein synthesis and translation efficiency of β-F1-ATPase in primary myotubes cultured from a lean subject, and after exposure to NEFA extracted from serum of an obese subject, were similar to those obtained in humans. Among candidate microRNAs (i.e., non-coding RNAs regulating gene expression), we identified miR-127-5p in preventing the production of β-F1-ATPase. Muscle expression of miR-127-5p negatively correlated with β-F1-ATPase protein translation efficiency in humans (r = – 0.6744; P<0.01), and could be modeled in vitro by prolonged exposure of primary myotubes derived from the lean subject to NEFA extracted from the obese subject. On the other hand, locked nucleic acid inhibitor synthesized to target miR-127-5p significantly increased β-F1-ATPase translation efficiency in myotubes (0.6±0.1 vs 1.3±0.3, in control vs exposure to 50 nM inhibitor; P<0.05). Our experiments implicate circulating NEFA in obesity in suppressing muscle protein metabolism, and establish impaired β-F1-ATPase translation as an important consequence of obesity.

ContributorsTran, Lee (Author) / Hanavan, Paul (Author) / Campbell, Latoya (Author) / De Filippis, Elena (Author) / Lake, Douglas (Author) / Coletta, Dawn (Author) / Roust, Lori R. (Author) / Mandarino, Lawrence (Author) / Carroll, Chad C. (Author) / Katsanos, Christos (Author) / College of Health Solutions (Contributor)
Created2016-08-17
131762-Thumbnail Image.png
Description
Objectives: To explore the feasibility and effects of using a meditation mobile app 10-minutes a day for 4-weeks to reduce burnout (primary outcome), improve mindfulness, reduce stress, and depression in physician assistant (PA) students compared to a wait-list control.
Methods: This study was a randomized, wait-list, control trial with assessments

Objectives: To explore the feasibility and effects of using a meditation mobile app 10-minutes a day for 4-weeks to reduce burnout (primary outcome), improve mindfulness, reduce stress, and depression in physician assistant (PA) students compared to a wait-list control.
Methods: This study was a randomized, wait-list, control trial with assessments at baseline and post-intervention (week 4). Participants were asked to meditate using Calm for 10 minutes per day. A p value ≤0.05 was considered statistically significant.
Results: The majority of participants (n=19) stated using Calm helped them cope with the stress of PA school. The intervention group participated in meditation for an average of 76 minutes/week. There were significant differences in all outcomes for the intervention group (all p ≤0.06). There was a significant interaction between group and time factors in emotional exhaustion (p=.016) and depersonalization (p=.025).
Conclusions: Calm is a feasible way to reduce burnout in PA students. Our findings provide information that can be applied to the design of future studies.
ContributorsWorth, Taylor Nicole (Author) / Huberty, Jennifer (Thesis director) / Will, Kristen (Committee member) / Puzia, Megan (Committee member) / College of Health Solutions (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05