Matching Items (33)
128890-Thumbnail Image.png
Description

The unicellular green microalga Desmodesmus sp. S1 can produce more than 50% total lipid of cell dry weight under high light and nitrogen-limitation conditions. After irradiation by heavy 12C6+ ion beam of 10, 30, 60, 90 or 120 Gy, followed by screening of resulting mutants on 24-well microplates, more than

The unicellular green microalga Desmodesmus sp. S1 can produce more than 50% total lipid of cell dry weight under high light and nitrogen-limitation conditions. After irradiation by heavy 12C6+ ion beam of 10, 30, 60, 90 or 120 Gy, followed by screening of resulting mutants on 24-well microplates, more than 500 mutants were obtained. One of those, named D90G-19, exhibited lipid productivity of 0.298 g L-1⋅d-1, 20.6% higher than wild type, likely owing to an improved maximum quantum efficiency (Fv/Fm) of photosynthesis under stress. This work demonstrated that heavy-ion irradiation combined with high-throughput screening is an effective means for trait improvement. The resulting mutant D90G-19 may be used for enhanced lipid production.

ContributorsHu, Guangrong (Author) / Fan, Yong (Author) / Zhang, Lei (Author) / Yuan, Cheng (Author) / Wang, Jufang (Author) / Hu, Qiang (Author) / Li, Fuli (Author) / Julie Ann Wrigley Global Institute of Sustainability (Contributor)
Created2013-04-09
128138-Thumbnail Image.png
Description

Evolutionary games of cyclic competitions have been extensively studied to gain insights into one of the most fundamental phenomena in nature: biodiversity that seems to be excluded by the principle of natural selection. The Rock-Paper-Scissors (RPS) game of three species and its extensions [e.g., the Rock-Paper-Scissors-Lizard-Spock (RPSLS) game] are paradigmatic

Evolutionary games of cyclic competitions have been extensively studied to gain insights into one of the most fundamental phenomena in nature: biodiversity that seems to be excluded by the principle of natural selection. The Rock-Paper-Scissors (RPS) game of three species and its extensions [e.g., the Rock-Paper-Scissors-Lizard-Spock (RPSLS) game] are paradigmatic models in this field. In all previous studies, the intrinsic symmetry associated with cyclic competitions imposes a limitation on the resulting coexistence states, leading to only selective types of such states. We investigate the effect of nonuniform intraspecific competitions on coexistence and find that a wider spectrum of coexistence states can emerge and persist. This surprising finding is substantiated using three classes of cyclic game models through stability analysis, Monte Carlo simulations and continuous spatiotemporal dynamical evolution from partial differential equations. Our finding indicates that intraspecific competitions or alternative symmetry-breaking mechanisms can promote biodiversity to a broader extent than previously thought.

ContributorsPark, Junpyo (Author) / Do, Younghae (Author) / Jang, Bongsoo (Author) / Lai, Ying-Cheng (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2017-08-07
129618-Thumbnail Image.png
Description

A fundamental result in the evolutionary-game paradigm of cyclic competition in spatially extended ecological systems, as represented by the classic Reichenbach-Mobilia-Frey (RMF) model, is that high mobility tends to hamper or even exclude species coexistence. This result was obtained under the hypothesis that individuals move randomly without taking into account

A fundamental result in the evolutionary-game paradigm of cyclic competition in spatially extended ecological systems, as represented by the classic Reichenbach-Mobilia-Frey (RMF) model, is that high mobility tends to hamper or even exclude species coexistence. This result was obtained under the hypothesis that individuals move randomly without taking into account the suitability of their local environment. We incorporate local habitat suitability into the RMF model and investigate its effect on coexistence. In particular, we hypothesize the use of “basic instinct” of an individual to determine its movement at any time step. That is, an individual is more likely to move when the local habitat becomes hostile and is no longer favorable for survival and growth. We show that, when such local habitat suitability is taken into account, robust coexistence can emerge even in the high-mobility regime where extinction is certain in the RMF model. A surprising finding is that coexistence is accompanied by the occurrence of substantial empty space in the system. Reexamination of the RMF model confirms the necessity and the important role of empty space in coexistence. Our study implies that adaptation/movements according to local habitat suitability are a fundamental factor to promote species coexistence and, consequently, biodiversity.

ContributorsPark, Junpyo (Author) / Do, Younghae (Author) / Huang, Zi-Gang (Author) / Lai, Ying-Cheng (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2014
129634-Thumbnail Image.png
Description

Background: Microalgae are promising feedstock for production of lipids, sugars, bioactive compounds and in particular biofuels, yet development of sensitive and reliable phylotyping strategies for microalgae has been hindered by the paucity of phylogenetically closely-related finished genomes.

Results: Using the oleaginous eustigmatophyte Nannochloropsis as a model, we assessed current intragenus phylotyping

Background: Microalgae are promising feedstock for production of lipids, sugars, bioactive compounds and in particular biofuels, yet development of sensitive and reliable phylotyping strategies for microalgae has been hindered by the paucity of phylogenetically closely-related finished genomes.

Results: Using the oleaginous eustigmatophyte Nannochloropsis as a model, we assessed current intragenus phylotyping strategies by producing the complete plastid (pt) and mitochondrial (mt) genomes of seven strains from six Nannochloropsis species. Genes on the pt and mt genomes have been highly conserved in content, size and order, strongly negatively selected and evolving at a rate 33% and 66% of nuclear genomes respectively. Pt genome diversification was driven by asymmetric evolution of two inverted repeats (IRa and IRb): psbV and clpC in IRb are highly conserved whereas their counterparts in IRa exhibit three lineage-associated types of structural polymorphism via duplication or disruption of whole or partial genes. In the mt genomes, however, a single evolution hotspot varies in copy-number of a 3.5 Kb-long, cox1-harboring repeat. The organelle markers (e.g., cox1, cox2, psbA, rbcL and rrn16_mt) and nuclear markers (e.g., ITS2 and 18S) that are widely used for phylogenetic analysis obtained a divergent phylogeny for the seven strains, largely due to low SNP density. A new strategy for intragenus phylotyping of microalgae was thus proposed that includes (i) twelve sequence markers that are of higher sensitivity than ITS2 for interspecies phylogenetic analysis, (ii) multi-locus sequence typing based on rps11_mt-nad4, rps3_mt and cox2-rrn16_mt for intraspecies phylogenetic reconstruction and (iii) several SSR loci for identification of strains within a given species.

Conclusion: This first comprehensive dataset of organelle genomes for a microalgal genus enabled exhaustive assessment and searches of all candidate phylogenetic markers on the organelle genomes. A new strategy for intragenus phylotyping of microalgae was proposed which might be generally applicable to other microalgal genera and should serve as a valuable tool in the expanding algal biotechnology industry.

ContributorsWei, Li (Author) / Xin, Yi (Author) / Wang, Dongmei (Author) / Jing, Xiaoyan (Author) / Zhou, Qian (Author) / Su, Xiaoquan (Author) / Jia, Jing (Author) / Ning, Kang (Author) / Chen, Feng (Author) / Hu, Qiang (Author) / Xu, Jian (Author) / Julie Ann Wrigley Global Institute of Sustainability (Contributor)
Created2013-08-05
129668-Thumbnail Image.png
Description

Major progress has been made in the past decade towards understanding of the biosynthesis of red carotenoid astaxanthin and its roles in stress response while exploiting microalgae-based astaxanthin as a potent antioxidant for human health and as a coloring agent for aquaculture applications. In this review, astaxanthin-producing green microalgae are

Major progress has been made in the past decade towards understanding of the biosynthesis of red carotenoid astaxanthin and its roles in stress response while exploiting microalgae-based astaxanthin as a potent antioxidant for human health and as a coloring agent for aquaculture applications. In this review, astaxanthin-producing green microalgae are briefly summarized with Haematococcus pluvialis and Chlorella zofingiensis recognized to be the most popular astaxanthin-producers. Two distinct pathways for astaxanthin synthesis along with associated cellular, physiological, and biochemical changes are elucidated using H. pluvialis and C. zofingiensis as the model systems. Interactions between astaxanthin biosynthesis and photosynthesis, fatty acid biosynthesis and enzymatic defense systems are described in the context of multiple lines of defense mechanisms working in concert against photooxidative stress. Major pros and cons of mass cultivation of H. pluvialis and C. zofingiensis in phototrophic, heterotrophic, and mixotrophic culture modes are analyzed. Recent progress in genetic engineering of plants and microalgae for astaxanthin production is presented. Future advancement in microalgal astaxanthin research will depend largely on genome sequencing of H pluvialis and C. zofingiensis and genetic toolbox development. Continuous effort along the heterotrophic-phototrophic culture mode could lead to major expansion of the micro algal astaxanthin industry.

ContributorsHan, Danxiang (Author) / Li, Yantao (Author) / Hu, Qiang (Author) / Julie Ann Wrigley Global Institute of Sustainability (Contributor)
Created2013-08-30
129669-Thumbnail Image.png
Description

Nitrogen availability and cell density each affects growth and cellular astaxanthin content of Haematococcus pluvialis, but possible combined effects of these two factors on the content and productivity of astaxanthin, especially under outdoor culture conditions, is less understood. In this study, the effects of the initial biomass densities IBDs of

Nitrogen availability and cell density each affects growth and cellular astaxanthin content of Haematococcus pluvialis, but possible combined effects of these two factors on the content and productivity of astaxanthin, especially under outdoor culture conditions, is less understood. In this study, the effects of the initial biomass densities IBDs of 0.1, 0.5, 0.8, 1.5, 2.7, 3.5, and 5.0 g L-1 DW and initial nitrogen concentrations of 0, 4.4, 8.8, and 17.6 mM nitrate on growth and cellular astaxanthin content of H. pluvialis Flotow K-0084 were investigated in outdoor glass column photobioreactors in a batch culture mode. A low IBD of 0.1 g L-1 DW led to photo-bleaching of the culture within 1-2 days. When the IBD was 0.5 g L-1 and above, the rate at which the increase in biomass density and the astaxanthin content on a per cell basis was higher at lower IBD. When the IBD was optimal (i.e., 0.8 g L-1), the maximum astaxanthin content of 3.8% of DW was obtained in the absence of nitrogen, whereas the maximum astaxanthin productivity of 16.0 mg L-1 d(-1) was obtained in the same IBD culture containing 4.4 mM nitrogen. The strategies for achieving maximum Haematococcus biomass productivity and for maximum cellular astaxanthin content are discussed.

ContributorsWang, Junfeng (Author) / Sommerfeld, Milton (Author) / Lu, Congming (Author) / Hu, Qiang (Author) / Julie Ann Wrigley Global Institute of Sustainability (Contributor)
Created2013-08-30
127874-Thumbnail Image.png
Description

The lack of lipidome analytical tools has limited our ability to gain new knowledge about lipid metabolism in microalgae, especially for membrane glycerolipids. An electrospray ionization mass spectrometry-based lipidomics method was developed for Nannochloropsis oceanica IMET1, which resolved 41 membrane glycerolipids molecular species belonging to eight classes. Changes in membrane

The lack of lipidome analytical tools has limited our ability to gain new knowledge about lipid metabolism in microalgae, especially for membrane glycerolipids. An electrospray ionization mass spectrometry-based lipidomics method was developed for Nannochloropsis oceanica IMET1, which resolved 41 membrane glycerolipids molecular species belonging to eight classes. Changes in membrane glycerolipids under nitrogen deprivation and high-light (HL) conditions were uncovered. The results showed that the amount of plastidial membrane lipids including monogalactosyldiacylglycerol, phosphatidylglycerol, and the extraplastidic lipids diacylglyceryl-O-4′-(N, N, N,-trimethyl) homoserine and phosphatidylcholine decreased drastically under HL and nitrogen deprivation stresses. Algal cells accumulated considerably more digalactosyldiacylglycerol and sulfoquinovosyldiacylglycerols under stresses. The genes encoding enzymes responsible for biosynthesis, modification and degradation of glycerolipids were identified by mining a time-course global RNA-seq data set. It suggested that reduction in lipid contents under nitrogen deprivation is not attributable to the retarded biosynthesis processes, at least at the gene expression level, as most genes involved in their biosynthesis were unaffected by nitrogen supply, yet several genes were significantly up-regulated. Additionally, a conceptual eicosapentaenoic acid (EPA) biosynthesis network is proposed based on the lipidomic and transcriptomic data, which underlined import of EPA from cytosolic glycerolipids to the plastid for synthesizing EPA-containing chloroplast membrane lipids.

ContributorsHan, Danxiang (Author) / Jia, Jing (Author) / Li, Jing (Author) / Sommerfeld, Milton (Author) / Xu, Jian (Author) / Hu, Qiang (Author) / College of Liberal Arts and Sciences (Contributor)
Created2017-08-04
128531-Thumbnail Image.png
Description

We investigate the dynamics of ferrofluidic wavy vortex flows in the counter-rotating Taylor-Couette system, with a focus on wavy flows with a mixture of the dominant azimuthal modes. Without external magnetic field flows are stable and pro-grade with respect to the rotation of the inner cylinder. More complex behaviors can

We investigate the dynamics of ferrofluidic wavy vortex flows in the counter-rotating Taylor-Couette system, with a focus on wavy flows with a mixture of the dominant azimuthal modes. Without external magnetic field flows are stable and pro-grade with respect to the rotation of the inner cylinder. More complex behaviors can arise when an axial or a transverse magnetic field is applied. Depending on the direction and strength of the field, multi-stable wavy states and bifurcations can occur. We uncover the phenomenon of flow pattern reversal as the strength of the magnetic field is increased through a critical value. In between the regimes of pro-grade and retrograde flow rotations, standing waves with zero angular velocities can emerge. A striking finding is that, under a transverse magnetic field, a second reversal in the flow pattern direction can occur, where the flow pattern evolves into pro-grade rotation again from a retrograde state. Flow reversal is relevant to intriguing phenomena in nature such as geomagnetic reversal. Our results suggest that, in ferrofluids, flow pattern reversal can be induced by varying a magnetic field in a controlled manner, which can be realized in laboratory experiments with potential applications in the development of modern fluid devices.

ContributorsAltmeyer, Sebastian (Author) / Do, Younghae (Author) / Lai, Ying-Cheng (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2015-12-21
128555-Thumbnail Image.png
Description

We investigate fundamental nonlinear dynamics of ferrofluidic Taylor-Couette flow - flow confined be-tween two concentric independently rotating cylinders - consider small aspect ratio by solving the ferro-hydrodynamical equations, carrying out systematic bifurcation analysis. Without magnetic field, we find steady flow patterns, previously observed with a simple fluid, such as those

We investigate fundamental nonlinear dynamics of ferrofluidic Taylor-Couette flow - flow confined be-tween two concentric independently rotating cylinders - consider small aspect ratio by solving the ferro-hydrodynamical equations, carrying out systematic bifurcation analysis. Without magnetic field, we find steady flow patterns, previously observed with a simple fluid, such as those containing normal one- or two vortex cells, as well as anomalous one-cell and twin-cell flow states. However, when a symmetry-breaking transverse magnetic field is present, all flow states exhibit stimulated, finite two-fold mode. Various bifurcations between steady and unsteady states can occur, corresponding to the transitions between the two-cell and one-cell states. While unsteady, axially oscillating flow states can arise, we also detect the emergence of new unsteady flow states. In particular, we uncover two new states: one contains only the azimuthally oscillating solution in the configuration of the twin-cell flow state, and an-other a rotating flow state. Topologically, these flow states are a limit cycle and a quasiperiodic solution on a two-torus, respectively. Emergence of new flow states in addition to observed ones with classical fluid, indicates that richer but potentially more controllable dynamics in ferrofluidic flows, as such flow states depend on the external magnetic field.

ContributorsAltmeyer, Sebastian (Author) / Do, Younghae (Author) / Lai, Ying-Cheng (Author)
Created2017-01-06
128752-Thumbnail Image.png
Description

Type 2 diabetes (T2D) is a complex metabolic disease that is more prevalent in ethnic groups such as Mexican Americans, and is strongly associated with the risk factors obesity and insulin resistance. The goal of this study was to perform whole genome gene expression profiling in adipose tissue to detect

Type 2 diabetes (T2D) is a complex metabolic disease that is more prevalent in ethnic groups such as Mexican Americans, and is strongly associated with the risk factors obesity and insulin resistance. The goal of this study was to perform whole genome gene expression profiling in adipose tissue to detect common patterns of gene regulation associated with obesity and insulin resistance. We used phenotypic and genotypic data from 308 Mexican American participants from the Veterans Administration Genetic Epidemiology Study (VAGES). Basal fasting RNA was extracted from adipose tissue biopsies from a subset of 75 unrelated individuals, and gene expression data generated on the Illumina BeadArray platform. The number of gene probes with significant expression above baseline was approximately 31,000. We performed multiple regression analysis of all probes with 15 metabolic traits. Adipose tissue had 3,012 genes significantly associated with the traits of interest (false discovery rate, FDR ≤ 0.05). The significance of gene expression changes was used to select 52 genes with significant (FDR ≤ 10-4) gene expression changes across multiple traits. Gene sets/Pathways analysis identified one gene, alcohol dehydrogenase 1B (ADH1B) that was significantly enriched (P < 10-60) as a prime candidate for involvement in multiple relevant metabolic pathways. Illumina BeadChip derived ADH1B expression data was consistent with quantitative real time PCR data. We observed significant inverse correlations with waist circumference (2.8 x 10[superscript -9]), BMI (5.4 x 10-6), and fasting plasma insulin (P < 0.001). These findings are consistent with a central role for ADH1B in obesity and insulin resistance and provide evidence for a novel genetic regulatory mechanism for human metabolic diseases related to these traits.

ContributorsWinnier, Deidre A. (Author) / Fourcaudot, Marcel (Author) / Norton, Luke (Author) / Abdul-Ghani, Muhammad A. (Author) / Hu, Shirley L. (Author) / Farook, Vidya S. (Author) / Coletta, Dawn (Author) / Kumar, Satish (Author) / Puppala, Sobha (Author) / Chittoor, Geetha (Author) / Dyer, Thomas D. (Author) / Arya, Rector (Author) / Carless, Melanie (Author) / Lehman, Donna M. (Author) / Curran, Joanne E. (Author) / Cromack, Douglas T. (Author) / Tripathy, Devjit (Author) / Blangero, John (Author) / Duggirala, Ravindranath (Author) / Goring, Harald H. H. (Author) / DeFronzo, Ralph A. (Author) / Jenkinson, Christopher P. (Author) / College of Liberal Arts and Sciences (Contributor)
Created2015-04-01