Matching Items (1,085)
Filtering by

Clear all filters

151575-Thumbnail Image.png
Description
A general continuum model for simulating the flow of ions in the salt baths that surround and fill excitable neurons is developed and presented. The ion densities and electric potential are computed using the drift-diffusion equations. In addition, a detailed model is given for handling the electrical dynamics on interior

A general continuum model for simulating the flow of ions in the salt baths that surround and fill excitable neurons is developed and presented. The ion densities and electric potential are computed using the drift-diffusion equations. In addition, a detailed model is given for handling the electrical dynamics on interior membrane boundaries, including a model for ion channels in the membranes that facilitate the transfer of ions in and out of cells. The model is applied to the triad synapse found in the outer plexiform layer of the retina in most species. Experimental evidence suggests the existence of a negative feedback pathway between horizontal cells and cone photoreceptors that modulates the flow of calcium ions into the synaptic terminals of cones. However, the underlying mechanism for this feedback is controversial and there are currently three competing hypotheses: the ephaptic hypothesis, the pH hypothesis and the GABA hypothesis. The goal of this work is to test some features of the ephaptic hypothesis using detailed simulations that employ rigorous numerical methods. The model is first applied in a simple rectangular geometry to demonstrate the effects of feedback for different extracellular gap widths. The model is then applied to a more complex and realistic geometry to demonstrate the existence of strictly electrical feedback, as predicted by the ephaptic hypothesis. Lastly, the effects of electrical feedback in regards to the behavior of the bipolar cell membrane potential is explored. Figures for the ion densities and electric potential are presented to verify key features of the model. The computed steady state IV curves for several cases are presented, which can be compared to experimental data. The results provide convincing evidence in favor of the ephaptic hypothesis since the existence of feedback that is strictly electrical in nature is shown, without any dependence on pH effects or chemical transmitters.
ContributorsJones, Jeremiah (Author) / Gardner, Carl (Committee member) / Baer, Steven (Committee member) / Crook, Sharon (Committee member) / Kostelich, Eric (Committee member) / Ringhofer, Christian (Committee member) / Arizona State University (Publisher)
Created2013
150481-Thumbnail Image.png
Description
The overall goal of this dissertation is to advance understanding of biofilm reduction of oxidized contaminants in water and wastewater. Chapter 1 introduces the fundamentals of biological reduction of three oxidized contaminants (nitrate, perchlorate, and trichloriethene (TCE)) using two biofilm processes (hydrogen-based membrane biofilm reactors (MBfR) and packed-bed heterotrophic reactors

The overall goal of this dissertation is to advance understanding of biofilm reduction of oxidized contaminants in water and wastewater. Chapter 1 introduces the fundamentals of biological reduction of three oxidized contaminants (nitrate, perchlorate, and trichloriethene (TCE)) using two biofilm processes (hydrogen-based membrane biofilm reactors (MBfR) and packed-bed heterotrophic reactors (PBHR)), and it identifies the research objectives. Chapters 2 through 6 focus on nitrate removal using the MBfR and PBHR, while chapters 7 through 10 investigate simultaneous reduction of nitrate and another oxidized compound (perchlorate, sulfate, or TCE) in the MBfR. Chapter 11 summarizes the major findings of this research. Chapters 2 and 3 demonstrate nitrate removal in a groundwater and identify the maximum nitrate loadings using a pilot-scale MBfR and a pilot-scale PBHR, respectively. Chapter 4 compares the MBfR and the PBHR for denitrification of the same nitrate-contaminated groundwater. The comparison includes the maximum nitrate loading, the effluent water quality of the denitrification reactors, and the impact of post-treatment on water quality. Chapter 5 theoretically and experimentally demonstrates that the nitrate biomass-carrier surface loading, rather than the traditionally used empty bed contact time or nitrate volumetric loading, is the primary design parameter for heterotrophic denitrification. Chapter 6 constructs a pH-control model to predict pH, alkalinity, and precipitation potential in heterotrophic or hydrogen-based autotrophic denitrification reactors. Chapter 7 develops and uses steady-state permeation tests and a mathematical model to determine the hydrogen-permeation coefficients of three fibers commonly used in the MBfR. The coefficients are then used as inputs for the three models in Chapters 8-10. Chapter 8 develops a multispecies biofilm model for simultaneous reduction of nitrate and perchlorate in the MBfR. The model quantitatively and systematically explains how operating conditions affect nitrate and perchlorate reduction and biomass distribution via four mechanisms. Chapter 9 modifies the nitrate and perchlorate model into a nitrate and sulfate model and uses it to identify operating conditions corresponding to onset of sulfate reduction. Chapter 10 modifies the nitrate and perchlorate model into a nitrate and TCE model and uses it to investigate how operating conditions affect TCE reduction and accumulation of TCE reduction intermediates.
ContributorsTang, Youneng (Author) / Rittmann, Bruce E. (Thesis advisor) / Westerhoff, Paul (Committee member) / Krajmalnik-Brown, Rosa (Committee member) / Halden, Rolf (Committee member) / Arizona State University (Publisher)
Created2012
Description
It is possible in a properly controlled environment, such as industrial metrology, to make significant headway into the non-industrial constraints on image-based position measurement using the techniques of image registration and achieve repeatable feature measurements on the order of 0.3% of a pixel, or about an order of magnitude improvement

It is possible in a properly controlled environment, such as industrial metrology, to make significant headway into the non-industrial constraints on image-based position measurement using the techniques of image registration and achieve repeatable feature measurements on the order of 0.3% of a pixel, or about an order of magnitude improvement on conventional real-world performance. These measurements are then used as inputs for a model optimal, model agnostic, smoothing for calibration of a laser scribe and online tracking of velocimeter using video input. Using appropriate smooth interpolation to increase effective sample density can reduce uncertainty and improve estimates. Use of the proper negative offset of the template function has the result of creating a convolution with higher local curvature than either template of target function which allows improved center-finding. Using the Akaike Information Criterion with a smoothing spline function it is possible to perform a model-optimal smooth on scalar measurements without knowing the underlying model and to determine the function describing the uncertainty in that optimal smooth. An example of empiric derivation of the parameters for a rudimentary Kalman Filter from this is then provided, and tested. Using the techniques of Exploratory Data Analysis and the "Formulize" genetic algorithm tool to convert the spline models into more accessible analytic forms resulted in stable, properly generalized, KF with performance and simplicity that exceeds "textbook" implementations thereof. Validation of the measurement includes that, in analytic case, it led to arbitrary precision in measurement of feature; in reasonable test case using the methods proposed, a reasonable and consistent maximum error of around 0.3% the length of a pixel was achieved and in practice using pixels that were 700nm in size feature position was located to within ± 2 nm. Robust applicability is demonstrated by the measurement of indicator position for a King model 2-32-G-042 rotameter.
ContributorsMunroe, Michael R (Author) / Phelan, Patrick (Thesis advisor) / Kostelich, Eric (Committee member) / Mahalov, Alex (Committee member) / Arizona State University (Publisher)
Created2012
136083-Thumbnail Image.png
Description
Mortality of 1918 influenza virus was high, partly due to bacteria coinfections. We characterize pandemic mortality in Arizona, which had high prevalence of tuberculosis. We applied regressions to over 35,000 data points to estimate the basic reproduction number and excess mortality. Age-specific mortality curves show elevated mortality for all age

Mortality of 1918 influenza virus was high, partly due to bacteria coinfections. We characterize pandemic mortality in Arizona, which had high prevalence of tuberculosis. We applied regressions to over 35,000 data points to estimate the basic reproduction number and excess mortality. Age-specific mortality curves show elevated mortality for all age groups, especially the young, and senior sparing effects. The low value for reproduction number indicates that transmissibility was moderately low.
ContributorsJenner, Melinda Eva (Author) / Chowell-Puente, Gerardo (Thesis director) / Kostelich, Eric (Committee member) / Barrett, The Honors College (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / School of Life Sciences (Contributor)
Created2015-05
136857-Thumbnail Image.png
Description
Glioblastoma Multiforme (GBM) is an aggressive and deadly form of brain cancer with a median survival time of about a year with treatment. Due to the aggressive nature of these tumors and the tendency of gliomas to follow white matter tracks in the brain, each tumor mass has a unique

Glioblastoma Multiforme (GBM) is an aggressive and deadly form of brain cancer with a median survival time of about a year with treatment. Due to the aggressive nature of these tumors and the tendency of gliomas to follow white matter tracks in the brain, each tumor mass has a unique growth pattern. Consequently it is difficult for neurosurgeons to anticipate where the tumor will spread in the brain, making treatment planning difficult. Archival patient data including MRI scans depicting the progress of tumors have been helpful in developing a model to predict Glioblastoma proliferation, but limited scans per patient make the tumor growth rate difficult to determine. Furthermore, patient treatment between scan points can significantly compound the challenge of accurately predicting the tumor growth. A partnership with Barrow Neurological Institute has allowed murine studies to be conducted in order to closely observe tumor growth and potentially improve the current model to more closely resemble intermittent stages of GBM growth without treatment effects.
ContributorsSnyder, Lena Haley (Author) / Kostelich, Eric (Thesis director) / Frakes, David (Committee member) / Barrett, The Honors College (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / Harrington Bioengineering Program (Contributor)
Created2014-05
137145-Thumbnail Image.png
Description
Through this creative project, I executed a Distracted Driving Awareness Campaign at Arizona State University to raise awareness about the dangers of distracted driving, specifically texting while driving. As an Undergraduate Student Government Senator, my priority is the safety and success of students, both in and out of the classroom.

Through this creative project, I executed a Distracted Driving Awareness Campaign at Arizona State University to raise awareness about the dangers of distracted driving, specifically texting while driving. As an Undergraduate Student Government Senator, my priority is the safety and success of students, both in and out of the classroom. By partnering with State Farm and AT&T, we were able to raise awareness about the dangers of distracted driving and collected over 200 pledges from students to never text and drive.
ContributorsHibbs, Jordan Ashley (Author) / Miller, Clark (Thesis director) / Parmentier, Mary Jane (Committee member) / Barrett, The Honors College (Contributor) / College of Liberal Arts and Sciences (Contributor) / School of Politics and Global Studies (Contributor) / Department of Psychology (Contributor) / Graduate College (Contributor)
Created2014-05
137666-Thumbnail Image.png
Description
Dividing the plane in half leaves every border point of one region a border point of both regions. Can we divide up the plane into three or more regions such that any point on the boundary of at least one region is on the border of all the regions? In

Dividing the plane in half leaves every border point of one region a border point of both regions. Can we divide up the plane into three or more regions such that any point on the boundary of at least one region is on the border of all the regions? In fact, it is possible to design a dynamical system for which the basins of attractions have this Wada property. In certain circumstances, both the Hénon map, a simple system, and the forced damped pendulum, a physical model, produce Wada basins.
ContributorsWhitehurst, Ryan David (Author) / Kostelich, Eric (Thesis director) / Jones, Donald (Committee member) / Armbruster, Dieter (Committee member) / Barrett, The Honors College (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / Department of Chemistry and Biochemistry (Contributor)
Created2013-05
137685-Thumbnail Image.png
Description
Influenza remains a constant concern for public health agencies across the nation and worldwide. Current methods of surveillance suffice but they fall short of their true potential. Incorporation of evolutionary data and analysis through studies such as phylogeography could reveal geographic sources of variation. Identification and targeting of such sources

Influenza remains a constant concern for public health agencies across the nation and worldwide. Current methods of surveillance suffice but they fall short of their true potential. Incorporation of evolutionary data and analysis through studies such as phylogeography could reveal geographic sources of variation. Identification and targeting of such sources for public health initiatives could yield increased effectiveness of influenza treatments. As it stands there is a lack of evolutionary data available for such use, particularly in the southwest. Our study focused on the sequencing and phylogeography of southwestern Influenza A samples from the Mayo Clinic. We fully sequenced two neuraminidase genes and combined them with archived sequence data from the Influenza Research Database. Using RAxML we identified the clade containing our sequences and performed a phylogeographic analysis using ZooPhy. The resultant data were analyzed using programs such as SPREAD and Tracer. Our results show that the southwest sequences emerged from California and the ancestral root of the clade came from New York. Our Bayesian maximum clade credibility (MCC) tree data and SPREAD analysis implicates California as a source of influenza variation in the United States. This study demonstrates that phylogeography is a viable tool to incorporate evolutionary data into existing forms of influenza surveillance.
ContributorsTurnock, Adam Ryan (Author) / Scotch, Matthew (Thesis director) / Halden, Rolf (Committee member) / Pycke, Benny (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor)
Created2013-05
137709-Thumbnail Image.png
Description
Background: Latinos represent 40.8% of the population in Phoenix (U.S. Census Bureau Population Division, 2010). South Phoenix, also known as the South Mountain Village, defined in geographical terms as area zip codes 85040 and 85042; is a predominantly Latino community comprised of mixed citizenship status households. During the 2010 United

Background: Latinos represent 40.8% of the population in Phoenix (U.S. Census Bureau Population Division, 2010). South Phoenix, also known as the South Mountain Village, defined in geographical terms as area zip codes 85040 and 85042; is a predominantly Latino community comprised of mixed citizenship status households. During the 2010 United States Census 60.3% of the population in South Phoenix identified as Latino, 25.75% of the total population was foreign born. Of the foreign born population, 88.95% were of Latin American origin (United States Census Bureau, 2007-2011 American Community Survey). Understanding how Latino immigrants perceive differences in health between their communities in country of origin and communities in the United States is largely unknown. Irrespective of political positions, understanding how Latino immigrants perceive personal health and the health of their communities is of interest to inform public policy and implement needed interventions in the
public health sphere.
Methods: Semi-structured interviews were collected from 55 adults from the South Phoenix community between November 2009 and September 2010. Interviews were digitally recorded with participant permission and transcribed. Of those collected, 48 transcribed interviews were analyzed using a codebook designed by the researcher. Percent agreement evaluated inter-rater reliability.Results: Latino immigrants in South Phoenix largely agree that health quality is heavily dependent on personal responsibility and not an intrinsic attribute of a given place. Emotional contentedness and distress, both factors of mental health, are impacted by cross-cultural differences between Latino and U.S. culture systems.
Conclusions: As people’s personal perceptions of differences in health are complex concepts influenced by personal backgrounds, culture, and beliefs, attempting to demark a side of the border as ‘healthier’ than the other using personal perceptions is overly simplified and misses central concepts. Instead, exploration of individual variables impacting health allowed this study to gain a more nuanced understanding in how people determine quality of both personal and environmental health. While Latino migrants in South Phoenix largely agree that health is based on personal responsibility and choices, many nonetheless experience higher levels of contentedness and emotional health in their country of origin.
ContributorsGray, Laurel (Author) / Wutich, Amber (Thesis director) / Quiroga, S. Seline (Committee member) / Nelson, Margaret (Committee member) / Slade, B. Alexandra (Committee member) / Barrett, The Honors College (Contributor) / College of Liberal Arts and Sciences (Contributor)
Created2013-05
137712-Thumbnail Image.png
Description
Trichloroethene (TCE) and hexavalent chromium [Cr(VI)] are toxic and carcinogenic contaminants found in drinking water resources across the United States. A series of Bench-scale treatability studies were conducted to evaluate the effectiveness of a consortium of facultative and strictly anaerobic bacteria, KB-1®, to remove TCE and Cr(VI) from a contaminated

Trichloroethene (TCE) and hexavalent chromium [Cr(VI)] are toxic and carcinogenic contaminants found in drinking water resources across the United States. A series of Bench-scale treatability studies were conducted to evaluate the effectiveness of a consortium of facultative and strictly anaerobic bacteria, KB-1®, to remove TCE and Cr(VI) from a contaminated aquifer in San Diego. These series of treatability studies were also performed to prepare data and mature packed sediment columns for the deployment of the In Situ Microcosm Array (ISMA), a diagnostic device for determining optimal treatments for a contaminated aquifer, at this particular site. First, a control panel for the ISMA’s Injection Module (IM) was created in order to deliver nutrients to the columns. Then, a column treatability study was performed in order to produce columns with an established KB-1® consortium, so that all TCE in the column influent was converted to ethene by the time it had exited the column. Finally, a batch bottle treatability study was performed to determine KB-1®’s effectiveness at remediating both TCE and Cr(VI) from the San Diego ground-water samples. The results from the column study found that KB-1® was able to reduce TCE in mineral media. However, in the presence of site ground-water for the batch bottle study, KB-1® was only able to reduce Cr(VI) and no TCE dechlorination was observed. This result suggests that the dechlorinating culture cannot survive prolonged exposure to Cr(VI). Therefore, future work may involve repeating the batch bottle study with Cr(VI) removed from the groundwater prior to inoculation to determine if KB-1® is then able to dechlorinate TCE.
ContributorsDuong, Benjamin Taylor (Author) / Halden, Rolf (Thesis director) / Torres, Cesar (Committee member) / Krajmalnik-Brown, Rosa (Committee member) / Barrett, The Honors College (Contributor) / School of Dance (Contributor) / Chemical Engineering Program (Contributor)
Created2013-05