Matching Items (315)
Description
Chisholm’s contrary-to-duty paradox raises important questions for formulating instances of conditional obligation. Angelika Kratzer is one linguist whose theories offer some solutions to these questions; more generally, she provides theories for how we should represent modals, conditionals, and other features of language in terms of functions. Though her theories are

Chisholm’s contrary-to-duty paradox raises important questions for formulating instances of conditional obligation. Angelika Kratzer is one linguist whose theories offer some solutions to these questions; more generally, she provides theories for how we should represent modals, conditionals, and other features of language in terms of functions. Though her theories are incredibly useful, they do not adequately represent the Chisholm scenario as a whole. In this paper, I attempt to address this shortcoming in her theory. First, I present and explain some of Kratzer’s main ideas. Then, I explain how her theory offers a solution to Chisholm’s Paradox, and examine a shortcoming of her theory as presented– specifically, the fact that her theory does not account for the importance of different norms in relation to each other. Finally, with the Chisholm situation as a backdrop, I offer my own contribution to her theory. Namely, I propose assigning an importance “score” to each norm, and factoring that “score” into the machinery of Kratzer’s theory.
ContributorsBrooks, Elizabeth (Author) / nair, shyam (Thesis director) / Pinillos, Angel (Committee member) / Barrett, The Honors College (Contributor) / College of Integrative Sciences and Arts (Contributor) / Historical, Philosophical & Religious Studies, Sch (Contributor)
Created2024-05
Description
Immediate early genes (IEGs) are the first set of genes to be transcribed in a cell in response to stimuli; their expression is quick and is not protein synthesis dependent. Neurons are activated in response to external stimuli, causing a rapid increase in IEG expression in the brain. IEG proteins

Immediate early genes (IEGs) are the first set of genes to be transcribed in a cell in response to stimuli; their expression is quick and is not protein synthesis dependent. Neurons are activated in response to external stimuli, causing a rapid increase in IEG expression in the brain. IEG proteins go on to affect fundamental neurobiological processes that are known to be dysfunctional in patients with psychiatric disorders, and therefore IEGs have been connected to the pathogenesis of schizophrenia. Early growth response (Egr) genes are immediate early gene transcription factors (IEG-TFs) that are expressed in response to an altered environment. The IEG-TFs, early growth response 1 (EGR1) and early growth response 3 (EGR3) are necessary for processes such as memory and synaptic plasticity; lack of function in these genes causes dysfunction or disruption of these processes. We wanted to observe if increasing the function of Egrs by overexpressing them will lead to improved memory. To help further understand how behavior is affected by the overexpression (O/E) of Egr1 in response to stimuli, the AAV-ESARE-Egr1 virus was developed to be injected in the hippocampus of mice. In the hippocampus of wild-type (WT) mice, cells that are active endogenously express Egr1. The virus was created using the synaptic activity-response element (SARE), an element discovered on the promoter of the IEG activity-regulated cytoskeleton-associated (Arc) gene by our collaborators in Japan. Using an “enhanced” form of SARE (ESARE), our newly created virus acts to overexpress Egr1 only in response to activity in the hippocampus; we can then observe if the behavioral processes associated with Egr1 will improve. First, this project aims to validate that the AAV-ESARE-Egr1 virus is increasing Egr1 expression in the active hippocampal dentate gyrus (DG) granule cells of WT mice, and only in response to activity. The activity is in the form of a physiological stimulus, environmental enrichment (EE) and a non-physiological stimulus, electroconvulsive seizures (ECS). After confirming these characteristics of AAV-ESARE-Egr1 we can then use it to observe if EGR1 O/E improves the memory of mice.
ContributorsWallace, Sophie (Author) / Lewis, Candace (Thesis director) / Gallitano, Amelia (Committee member) / Barrett, The Honors College (Contributor) / College of Integrative Sciences and Arts (Contributor)
Created2024-05
Description
Objective: Previous studies have expressed that individuals with dyslexia may be hypersensitive to stimuli when compared to typical individuals, creating the neural noise hypothesis. This study uses electroencephalogram (EEG) to look at participants' mismatch negativity (MMN) response to the distinctive English phoneme /æ/ and an allophone of the phoneme /æ/,

Objective: Previous studies have expressed that individuals with dyslexia may be hypersensitive to stimuli when compared to typical individuals, creating the neural noise hypothesis. This study uses electroencephalogram (EEG) to look at participants' mismatch negativity (MMN) response to the distinctive English phoneme /æ/ and an allophone of the phoneme /æ/, measuring their reaction to the variation between these two sounds. Methods: Twenty-two adults, fourteen with dyslexia and 8 controls partook in an auditory oddball EEG experiment measuring MMN with the amplitudes and latencies being collected. Results: Five participants demonstrated a large MMN response, four of which were in the dyslexic group. These participants’ results indicate an increased sensitivity to phonetic differences. Significance: Understanding how some individuals with dyslexia process phonetic differences may be key to comprehending how a dyslexic subtype takes in auditory information.
ContributorsOvaska, Madeline (Author) / Peter, Beate (Thesis director) / Daliri, Ayoub (Committee member) / Kim, Yookyung (Committee member) / Barrett, The Honors College (Contributor) / College of Integrative Sciences and Arts (Contributor) / Department of Psychology (Contributor)
Created2024-05
Description
Background: Dyslexia is a neurodevelopmental impacting reading and writing ability present in around 5 to 9 percent of the population. The etiology of the condition is not currently well understood. Purpose: To identify new genes of interest regarding the etiology of dyslexia, describe the interaction of those genes within known gene

Background: Dyslexia is a neurodevelopmental impacting reading and writing ability present in around 5 to 9 percent of the population. The etiology of the condition is not currently well understood. Purpose: To identify new genes of interest regarding the etiology of dyslexia, describe the interaction of those genes within known gene networks, and discuss potential relationships between their expression in the early developing brain and phenotypic outcomes. Method: With informed consent, participants’ phenotypic and exome data were collected. Phenotypic data were collected using assessments measuring reading and spelling ability. Exome data were collected via saliva samples and processed at the UW-CRDR. Exome data were then filtering using Seqr and compared across participant families. Certain genes with identical variations were visually validated using the Integrated Genome Viewer, and then investigated using STRING Network Analysis and the Human Brain Transcriptome. Results: Three genes were identified: BCL6, DNAH1, and DNAH12. Protein-protein interactions were confirmed between DNAH1 and DNAH12 via STRING Network Analysis. BLC6 and DNAH1 experience higher postnatal expression in the cerebellar cortex. DNAH12 experiences higher prenatal expression in the hippocampus. Discussion: The findings appear to be consistent with a heterogenous and polygenic model of dyslexia. The correlation between the participants’ genotypes and phenotypes is not strong enough to draw significant conclusions regarding genotype/phenotype connections. A larger participant sample size and analysis of a large pool of shared genes may reveal a clearer relationship.
ContributorsBanta, Claire (Author) / Peter, Beate (Thesis director) / Liu, Li (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor) / Sanford School of Social and Family Dynamics (Contributor) / College of Integrative Sciences and Arts (Contributor)
Created2024-05
Description
As obesity rates continue to rise in adolescents and young children, the concern for poor future health of the younger population grows. Physical activity and improving nutrition are two ways to combat obesity rates, and the Sustainability via Active Gardening Education (SAGE) project addresses this in underserved and low-income communities

As obesity rates continue to rise in adolescents and young children, the concern for poor future health of the younger population grows. Physical activity and improving nutrition are two ways to combat obesity rates, and the Sustainability via Active Gardening Education (SAGE) project addresses this in underserved and low-income communities in Maricopa County. This project employs a curriculum designed to promote physical activity and healthy eating for Early Care and Education (ECE) sites, most of which are daycares. Further, utilizing indicators of future health can also allow for us to understand and lower obesity rates. One indicator of future health is grip strength: greater grip strength is associated with healthier outcomes such as lower triglycerides, blood pressure, and body mass index. Grip strength has been observed in the older population; however, there are few studies looking at grip strength in younger children, namely preschoolers. As grip strength is a predictor of health, it follows that it should be observed in preschoolers, and improved, if possible, by factors such as physical activity, which would ultimately improve obesity rates. This study aimed to see if there was any relationship between physical activity and grip strength in preschoolers aged 3-5 years old. To do so, grip strength, hand length, height, weight, and information regarding physical activity of preschoolers enrolled in the SAGE project were collected. Physical activity and grip strength were not found to be significantly associated in this study; however, hand length and hand strength were associated. Among secondary outcomes, it was observed that males of ages 3 to 5-years-old may have greater hand grip strength than females of the same age group. Although this was not statistically significant, there was a trend toward statistical significance. Small sample size hampered observation of expected relationships between hand grip strength and dominant hand of the participants, and hand grip strength was not significantly related with BMI. Future directions would consist of collecting longitudinal data, as well as calling back previous years’ participants for additional data, so that there is a larger sample size for data analysis.
ContributorsAtluri, Haarika (Author) / Lee, Rebecca (Thesis director) / Tucker, Derek (Committee member) / Cantu Garcia, Lisbeth (Committee member) / De Mello, Gabrielli (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor)
Created2024-05