Matching Items (459)
149093-Thumbnail Image.png
Description
Bacteria are often regarded s pathogens, with deleterious impacts on the human body. However, it is known that the presence of trillions of bacteria on and in the human body impart beneficial effects on human health. Like a fingerprint, each individual’s microbiome is unique. The composition of bacteria in one

Bacteria are often regarded s pathogens, with deleterious impacts on the human body. However, it is known that the presence of trillions of bacteria on and in the human body impart beneficial effects on human health. Like a fingerprint, each individual’s microbiome is unique. The composition of bacteria in one person’s gut is different from the gut bacteria in another individual. Together, the human gut microbiome is a complex mix of organisms that is commonly referred to as “the second brain.� Its role in the human body goes beyond digestion and immune system function. The health of the microbiome factors into risk for illnesses as diverse as depression, obesity, bowel disorders and autism (Perlmutter et al., 2015). In context of the myriad of bacteria that live on and within the human body, the composition of bacteria in the gut may have the most significant impact on an individual’s well-being. This “superorganism� co-evolved with its host in order to provide essential and mutually beneficial functions (Ragonnaud et al., 2021).

Affecting millions of Americans, depression is one of the leading causes of the Global Burden of Disease (GBD), followed by anxiety (Gibson-Smith et al., 2018). Communication that occurs between the human brain and the gut microbiome has been found to be a major contributor towards mental health. The human gut microbiome is comprised of many microbes that can communicate with the brain through the gut-brain axis. However, factors such as stress and diets can interfere with this process, especially after increasing the permeability of the intestine (Khoshbin et al., 2020). Perturbation of the gut-brain axis has been implicated across a wide scale of neurodegenerative disorders, with respect to psychopathology (Bonaz et al., 2018). The environment of the gut, along with which species reside there, can help determine the link between gut function and disease. Therefore, it may be possible to prevent the degradation of an individual’s immune function and well-being through alteration of the gut microbiome. (abstract)
ContributorsPisarczyk, Nicole (Author) / Penton, Christopher (Thesis director) / Huffman, Holly (Committee member) / College of Integrative Sciences and Arts (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
137695-Thumbnail Image.png
Description
The use of synthetic cathinones or "bath salts" has risen dramatically in recent years with one of the most popular being Methylendioxypyrovalerone (MDPV). Following the temporary legislative ban on the sale and distribution of this compound , a multitude of other cathinone derivatives have been synthesized. The current study seeks

The use of synthetic cathinones or "bath salts" has risen dramatically in recent years with one of the most popular being Methylendioxypyrovalerone (MDPV). Following the temporary legislative ban on the sale and distribution of this compound , a multitude of other cathinone derivatives have been synthesized. The current study seeks to compare the abuse potential of MDPV with one of the emergent synthetic cathinones 4-methylethcathinone (4-MEC), based on their respective ability to lower current thresholds in an intracranial self-stimulation (ICSS) paradigm. Following acute administration (0.1, 0.5, 1 and 2 mg/kg i.p.) MDPV was found to significantly lower ICSS thresholds at all doses tested (F4,35=11.549, p<0.001). However, following acute administration (0.3,1,3,10,30 mg/kg i.p) 4-MEC produced no significant ICSS threshold depression (F5,135= 0.622, p = 0.684). Together these findings suggest that while MDPV may possess significant abuse potential, other synthetic cathinones such as 4-MEC may have a drastically reduced potential for abuse.
ContributorsWegner, Scott Andrew (Author) / Olive, M. Foster (Thesis director) / Presson, Clark (Committee member) / Sanabria, Federico (Committee member) / Barrett, The Honors College (Contributor) / Department of Chemistry and Biochemistry (Contributor) / Department of Psychology (Contributor)
Created2013-05
152348-Thumbnail Image.png
Description
Pathogenic Gram-negative bacteria employ a variety of molecular mechanisms to combat host defenses. Two-component regulatory systems (TCR systems) are the most ubiquitous signal transduction systems which regulate many genes required for virulence and survival of bacteria. In this study, I analyzed different TCR systems in two clinically-relevant Gram-negative bacteria, i.e.,

Pathogenic Gram-negative bacteria employ a variety of molecular mechanisms to combat host defenses. Two-component regulatory systems (TCR systems) are the most ubiquitous signal transduction systems which regulate many genes required for virulence and survival of bacteria. In this study, I analyzed different TCR systems in two clinically-relevant Gram-negative bacteria, i.e., oral pathogen Porphyromonas gingivalis and enterobacterial Escherichia coli. P. gingivalis is a major causative agent of periodontal disease as well as systemic illnesses, like cardiovascular disease. A microarray study found that the putative PorY-PorX TCR system controls the secretion and maturation of virulence factors, as well as loci involved in the PorSS secretion system, which secretes proteinases, i.e., gingipains, responsible for periodontal disease. Proteomic analysis (SILAC) was used to improve the microarray data, reverse-transcription PCR to verify the proteomic data, and primer extension assay to determine the promoter regions of specific PorX regulated loci. I was able to characterize multiple genetic loci regulated by this TCR system, many of which play an essential role in hemagglutination and host-cell adhesion, and likely contribute to virulence in this bacterium. Enteric Gram-negative bacteria must withstand many host defenses such as digestive enzymes, low pH, and antimicrobial peptides (AMPs). The CpxR-CpxA TCR system of E. coli has been extensively characterized and shown to be required for protection against AMPs. Most recently, this TCR system has been shown to up-regulate the rfe-rff operon which encodes genes involved in the production of enterobacterial common antigen (ECA), and confers protection against a variety of AMPs. In this study, I utilized primer extension and DNase I footprinting to determine how CpxR regulates the ECA operon. My findings suggest that CpxR modulates transcription by directly binding to the rfe promoter. Multiple genetic and biochemical approaches were used to demonstrate that specific TCR systems contribute to regulation of virulence factors and resistance to host defenses in P. gingivalis and E. coli, respectively. Understanding these genetic circuits provides insight into strategies for pathogenesis and resistance to host defenses in Gram negative bacterial pathogens. Finally, these data provide compelling potential molecular targets for therapeutics to treat P. gingivalis and E. coli infections.
ContributorsLeonetti, Cori (Author) / Shi, Yixin (Thesis advisor) / Stout, Valerie (Committee member) / Nickerson, Cheryl (Committee member) / Sandrin, Todd (Committee member) / Arizona State University (Publisher)
Created2013
151797-Thumbnail Image.png
Description
The study of bacterial resistance to antimicrobial peptides (AMPs) is a significant area of interest as these peptides have the potential to be developed into alternative drug therapies to combat microbial pathogens. AMPs represent a class of host-mediated factors that function to prevent microbial infection of their host and serve

The study of bacterial resistance to antimicrobial peptides (AMPs) is a significant area of interest as these peptides have the potential to be developed into alternative drug therapies to combat microbial pathogens. AMPs represent a class of host-mediated factors that function to prevent microbial infection of their host and serve as a first line of defense. To date, over 1,000 AMPs of various natures have been predicted or experimentally characterized. Their potent bactericidal activities and broad-based target repertoire make them a promising next-generation pharmaceutical therapy to combat bacterial pathogens. It is important to understand the molecular mechanisms, both genetic and physiological, that bacteria employ to circumvent the bactericidal activities of AMPs. These understandings will allow researchers to overcome challenges posed with the development of new drug therapies; as well as identify, at a fundamental level, how bacteria are able to adapt and survive within varied host environments. Here, results are presented from the first reported large scale, systematic screen in which the Keio collection of ~4,000 Escherichia coli deletion mutants were challenged against physiologically significant AMPs to identify genes required for resistance. Less than 3% of the total number of genes on the E. coli chromosome was determined to contribute to bacterial resistance to at least one AMP analyzed in the screen. Further, the screen implicated a single cellular component (enterobacterial common antigen, ECA) and a single transporter system (twin-arginine transporter, Tat) as being required for resistance to each AMP class. Using antimicrobial resistance as a tool to identify novel genetic mechanisms, subsequent analyses were able to identify a two-component system, CpxR/CpxA, as a global regulator in bacterial resistance to AMPs. Multiple previously characterized CpxR/A members, as well as members found in this study, were identified in the screen. Notably, CpxR/A was found to transcriptionally regulate the gene cluster responsible for the biosynthesis of the ECA. Thus, a novel genetic mechanism was uncovered that directly correlates with a physiologically significant cellular component that appears to globally contribute to bacterial resistance to AMPs.
ContributorsWeatherspoon-Griffin, Natasha (Author) / Shi, Yixin (Thesis advisor) / Clark-Curtiss, Josephine (Committee member) / Misra, Rajeev (Committee member) / Nickerson, Cheryl (Committee member) / Stout, Valerie (Committee member) / Arizona State University (Publisher)
Created2013
148137-Thumbnail Image.png
Description

This thesis looks at how Latinx communities in Wyoming, despite recognizing the impossibility of overcoming the traditional conservative autocracy, still utilize their identity as a political response to unify Latinx communities throughout the state. The project draws from oral histories conducted with Latinx/Chicanx community members in Wyoming, including professors, legislators,

This thesis looks at how Latinx communities in Wyoming, despite recognizing the impossibility of overcoming the traditional conservative autocracy, still utilize their identity as a political response to unify Latinx communities throughout the state. The project draws from oral histories conducted with Latinx/Chicanx community members in Wyoming, including professors, legislators, and everyday citizens.

ContributorsFranco, David (Author) / Fonseca-Chávez, Vanessa (Thesis director) / Martínez, Rafael (Committee member) / College of Integrative Sciences and Arts (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
148323-Thumbnail Image.jpg
Description

Uniforms and logos are an essential part of sports teams and are created with the intention of representing the city and state of their respective teams. More than a uniform: How culture influences the creation of Arizona sports logos and jerseys presents a look at the conversations and processes undergone

Uniforms and logos are an essential part of sports teams and are created with the intention of representing the city and state of their respective teams. More than a uniform: How culture influences the creation of Arizona sports logos and jerseys presents a look at the conversations and processes undergone before teams are able to unveil their new threads. Four local professional teams are involved with this project: Phoenix Suns, Arizona Diamondbacks, Arizona Coyotes and Arizona Cardinals. Members from each of the organizations were interviewed, in addition to Greg Fisher of Fisher Design. Information was gathered from each of those interviews in addition to research done on the history of each of the team’s uniforms. The information was then created into a documentary that consists of visual and verbal components. The film highlights how each team attempts to represent Arizona and its culture when it comes to what they are wearing on the field, court or ice. The interviews capture the mindset of creative teams as they explore growing new ideas and looks, in addition to a historical delve into two of the team’s debuts in the 1990s. Many of Arizona’s sports teams have much more behind their logos and jerseys than meets the eye. The project taught me how adapt broadcast skills into documentary style storytelling and how important visuals are for longer features. The interviews showed that so many things are taken into consideration when designing a sports logo or uniform and the process can take either months or years to finally reach fruition.

ContributorsNoel, Adam Jude (Author) / Dieffenbach, Paola (Thesis director) / Easley, Isaac (Committee member) / College of Integrative Sciences and Arts (Contributor) / Walter Cronkite School of Journalism and Mass Comm (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
Description

The COVID-19 pandemic began in March of 2020 and drastically affected the global human population. Millions of people died due to a SARS-CoV-2 infection while many who survived developed devastating sequelae of the disease. In addition, the closure of schools and businesses led to international economic struggle in the year

The COVID-19 pandemic began in March of 2020 and drastically affected the global human population. Millions of people died due to a SARS-CoV-2 infection while many who survived developed devastating sequelae of the disease. In addition, the closure of schools and businesses led to international economic struggle in the year 2020 as global economies declined. Since the beginning of the pandemic, over 200,000 scientific articles have been published and compiled into a database that grows daily— a rare occurrence within the scientific community. This thesis uses natural language processing tools via Python and VOSviewer software to perform a bibliometric analysis on 205,712 papers published between January of 2020 and February of 2021 pertaining to COVID-19. We first investigate how to analyze these publications most effectively in terms of title versus abstract keyword searches, we further obtain the focus of the current scientific literature via co-occurrence analysis and clustering, and we at last discuss the time evolution of these topics over the course of 14 months.

ContributorsLovell, Madison Ray (Author) / Zheng, Wenwei (Thesis director) / Melkozernov, Alexander (Committee member) / College of Integrative Sciences and Arts (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
136115-Thumbnail Image.png
Description
Background: Both puberty and diets composed of high levels of saturated fats have been shown to result in central adiposity, fasting hyperinsulinemia, insulin resistance and impaired glucose tolerance. While a significantly insulinogenic phenotypic change occurs in these two incidences, glucose homeostasis does not appear to be affected. Methods: Male, Sprague-dawley

Background: Both puberty and diets composed of high levels of saturated fats have been shown to result in central adiposity, fasting hyperinsulinemia, insulin resistance and impaired glucose tolerance. While a significantly insulinogenic phenotypic change occurs in these two incidences, glucose homeostasis does not appear to be affected. Methods: Male, Sprague-dawley rats were fed diets consisting of CHOW or low fat (LF), High Fat Diet and High Fat Diet (HFD) with supplementary Canola Oil (Monounsaturated fat). These rats were given these diets at 4-5 weeks old and given intraperitoneal and oral glucose tolerance tests(IPGTT; OGTT) at 4 and 8 weeks to further understand glucose and insulin behavior under different treatments. (IPGTT: LF-n=14, HFD-n=16, HFD+CAN-n=12; OGTT: LF-n=8, HFD-n=8, HFD+CAN-n=6). Results: When comparing LF fed rats at 8 weeks with 4 week glucose challenge test, area under the curve (AUC) of glucose was 1.2 that of 4 weeks. At 8 weeks, HFD fed rats AUCg was much greater than LF fed rats under both IPGTT and OGTT. When supplemented with Canola oil, HFD fed rats AUC returned to LF data range. Despite the alleviating glucose homeostasis affects of Canola oil the AUC of insulin curve, which was elevated by HFD, remained high. Conclusion: HFD in maturing rats elevates fasting insulin levels, increases insulin resistance and lowers glucose homeostasis. When given a monounsaturated fatty acid (MUFA) supplement fasting hyperinsulinemia, and late hyperinsulinemia still occur though glucose homeostasis is regained. For OGTT HFD also induced late hyper c-peptide levels and compared to LF and HFD+CAN, a higher c-peptide level over time.
ContributorsRay, Tyler John (Author) / Caplan, Michael (Thesis director) / Herman, Richard (Committee member) / Towner, Kali (Committee member) / Barrett, The Honors College (Contributor) / Department of Chemistry and Biochemistry (Contributor) / W. P. Carey School of Business (Contributor) / School of Human Evolution and Social Change (Contributor)
Created2015-05
136118-Thumbnail Image.png
Description
Nucleic acids encode the information required to create life, and polymerases are the gatekeepers charged with maintaining the storage and flow of this genetic information. Synthetic biologists utilize this universal property to modify organisms and other systems to create unique traits or improve the function of others. One of the

Nucleic acids encode the information required to create life, and polymerases are the gatekeepers charged with maintaining the storage and flow of this genetic information. Synthetic biologists utilize this universal property to modify organisms and other systems to create unique traits or improve the function of others. One of the many realms in synthetic biology involves the study of biopolymers that do not exist naturally, which is known as xenobiology. Although life depends on two biopolymers for genetic storage, it may be possible that alternative molecules (xenonucleic acids – XNAs), could be used in their place in either a living or non-living system. However, implementation of an XNA based system requires the development of polymerases that can encode and decode information stored in these artificial polymers. A strategy called directed evolution is used to modify or alter the function of a protein of interest, but identifying mutations that can modify polymerase function is made problematic by their size and overall complexity. To reduce the amount of sequence space that needs to be samples when attempting to identify polymerase variants, we can try to make informed decisions about which amino acid residues may have functional roles in catalysis. An analysis of Family B polymerases has shown that residues which are involved in substrate specificity are often highly conserved both at the sequence and structure level. In order to validate the hypothesis that a strong correlation exists between structural conservation and catalytic activity, we have selected and mutated residues in the 9°N polymerase using a loss of function mutagenesis strategy based on a computational analysis of several homologues from a diverse range of taxa. Improvement of these models will hopefully lead to quicker identification of loci which are ideal engineering targets.
ContributorsHaeberle, Tyler Matthew (Author) / Chaput, John (Thesis director) / Chen, Julian (Committee member) / Larsen, Andrew (Committee member) / Barrett, The Honors College (Contributor) / Department of Chemistry and Biochemistry (Contributor) / School of Life Sciences (Contributor)
Created2015-05
136566-Thumbnail Image.png
Description
Lung cancer is the leading cause of cancer-related deaths in the US. Low-dose computed tomography (LDCT) scans are speculated to reduce lung cancer mortality. However LDCT scans impose multiple risks including false-negative results, false- positive results, overdiagnosis, and cancer due to repeated exposure to radiation. Immunosignaturing is a new method

Lung cancer is the leading cause of cancer-related deaths in the US. Low-dose computed tomography (LDCT) scans are speculated to reduce lung cancer mortality. However LDCT scans impose multiple risks including false-negative results, false- positive results, overdiagnosis, and cancer due to repeated exposure to radiation. Immunosignaturing is a new method proposed to screen and detect lung cancer, eliminating the risks associated with LDCT scans. Known and blinded primary blood sera from participants with lung cancer and no cancer were run on peptide microarrays and analyzed. Immunosignatures for each known sample collectively indicated 120 peptides unique to lung cancer and non-cancer participants. These 120 peptides were used to determine the status of the blinded samples. Verification of the results from Vanderbilt is pending.
ContributorsNguyen, Geneva Trieu (Author) / Woodbury, Neal (Thesis director) / Zhao, Zhan-Gong (Committee member) / Stafford, Phillip (Committee member) / Barrett, The Honors College (Contributor) / Department of Chemistry and Biochemistry (Contributor) / Department of Psychology (Contributor)
Created2015-05