Matching Items (53)
152007-Thumbnail Image.png
Description
The implications of a changing climate have a profound impact on human life, society, and policy making. The need for accurate climate prediction becomes increasingly important as we better understand these implications. Currently, the most widely used climate prediction relies on the synthesis of climate model simulations organized by the

The implications of a changing climate have a profound impact on human life, society, and policy making. The need for accurate climate prediction becomes increasingly important as we better understand these implications. Currently, the most widely used climate prediction relies on the synthesis of climate model simulations organized by the Coupled Model Intercomparison Project (CMIP); these simulations are ensemble-averaged to construct projections for the 21st century climate. However, a significant degree of bias and variability in the model simulations for the 20th century climate is well-known at both global and regional scales. Based on that insight, this study provides an alternative approach for constructing climate projections that incorporates knowledge of model bias. This approach is demonstrated to be a viable alternative which can be easily implemented by water resource managers for potentially more accurate projections. Tests of the new approach are provided on a global scale with an emphasis on semiarid regional studies for their particular vulnerability to water resource changes, using both the former CMIP Phase 3 (CMIP3) and current Phase 5 (CMIP5) model archives. This investigation is accompanied by a detailed analysis of the dynamical processes and water budget to understand the behaviors and sources of model biases. Sensitivity studies of selected CMIP5 models are also performed with an atmospheric component model by testing the relationship between climate change forcings and model simulated response. The information derived from each study is used to determine the progressive quality of coupled climate models in simulating the global water cycle by rigorously investigating sources of model bias related to the moisture budget. As such, the conclusions of this project are highly relevant to model development and potentially may be used to further improve climate projections.
ContributorsBaker, Noel C (Author) / Huang, Huei-Ping (Thesis advisor) / Trimble, Steve (Committee member) / Anderson, James (Committee member) / Clarke, Amanda (Committee member) / Calhoun, Ronald (Committee member) / Arizona State University (Publisher)
Created2013
151279-Thumbnail Image.png
Description
The present understanding of the formation and evolution of the earliest bodies in the Solar System is based in large part on geochemical and isotopic evidences contained within meteorites. The differentiated meteorites (meteorites originating from bodies that have experienced partial to complete melting) are particularly useful for deciphering magmatic processes

The present understanding of the formation and evolution of the earliest bodies in the Solar System is based in large part on geochemical and isotopic evidences contained within meteorites. The differentiated meteorites (meteorites originating from bodies that have experienced partial to complete melting) are particularly useful for deciphering magmatic processes occurring in the early Solar System. A rare group of differentiated meteorites, the angrites, are uniquely suited for such work. The angrites have ancient crystallization ages, lack secondary processing, and have been minimally affected by shock metamorphism, thus allowing them to retain their initial geochemical and isotopic characteristics at the time of formation. The scarcity of angrite samples made it difficult to conduct comprehensive investigations into the formation history of this unique meteorite group. However, a dramatic increase in the number of angrites recovered in recent years presents the opportunity to expand our understanding of their petrogenesis, as well as further refine our knowledge of the initial isotopic abundances in the early Solar System as recorded by their isotopic systematics. Using a combination of geochemical tools (radiogenic isotope chronometers and trace element chemistry), I have investigated the petrogenetic history of a group of four angrites that sample a range of formation conditions (cooling histories) and crystallization ages. Through isotope ratio measurements, I have examined a comprehensive set of long- and short-lived radiogenic isotope systems (26Al-26Mg, 87Rb-87Sr, 146Sm-142Nd, 147Sm-143Nd, and 176Lu-176Hf) within these four angrites. The results of these measurements provide information regarding crystallization ages, as well as revised estimates for the initial isotopic abundances of several key elements in the early Solar System. The determination of trace element concentrations in individual mineral phases, as well as bulk rock samples, provides important constraints on magmatic processes occurring on the angrite parent body. The measured trace element abundances are used to estimate the composition of the parent melts of individual angrites, examine crystallization conditions, and investigate possible geochemical affinities between various angrites. The new geochemical and isotopic measurements presented here significantly expand our understanding of the geochemical conditions found on the angrite parent body and the environment in which these meteorites formed.
ContributorsSanborn, Matthew E (Author) / Wadhwa, Meenakshi (Thesis advisor) / Hervig, Richard (Committee member) / Sharp, Thomas (Committee member) / Clarke, Amanda (Committee member) / Williams, Lynda (Committee member) / Carlson, Richard (Committee member) / Arizona State University (Publisher)
Created2012
151565-Thumbnail Image.png
Description
Harsh environments have conditions that make collecting scientific data difficult with existing commercial-off-the-shelf technology. Micro Electro Mechanical Systems (MEMS) technology is ideally suited for harsh environment characterization and operation due to the wide range of materials available and an incredible array of different sensing techniques while providing small device size,

Harsh environments have conditions that make collecting scientific data difficult with existing commercial-off-the-shelf technology. Micro Electro Mechanical Systems (MEMS) technology is ideally suited for harsh environment characterization and operation due to the wide range of materials available and an incredible array of different sensing techniques while providing small device size, low power consumption, and robustness. There were two main objectives of the research conducted. The first objective was to design, fabricate, and test novel sensors that measure the amount of exposure to ionizing radiation for a wide range of applications including characterization of harsh environments. Two types of MEMS ionizing radiation dosimeters were developed. The first sensor was a passive radiation-sensitive capacitor-antenna design. The antenna's emitted frequency of peak-intensity changed as exposure time to radiation increased. The second sensor was a film bulk acoustic-wave resonator, whose resonant frequency decreased with increasing ionizing radiation exposure time. The second objective was to develop MEMS sensor systems that could be deployed to gather scientific data and to use that data to address the following research question: do temperature and/or conductivity predict the appearance of photosynthetic organisms in hot springs. To this end, temperature and electrical conductivity sensor arrays were designed and fabricated based on mature MEMS technology. Electronic circuits and the software interface to the electronics were developed for field data collection. The sensor arrays utilized in the hot springs yielded results that support the hypothesis that temperature plays a key role in determining where the photosynthetic organisms occur. Additionally, a cold-film fluidic flow sensor was developed, which is suitable for near-boiling temperature measurement. Future research should focus on (1) developing a MEMS pH sensor array with integrated temperature, conductivity, and flow sensors to provide multi-dimensional data for scientific study and (2) finding solutions to biofouling and self-calibration, which affects sensor performance over long-term deployment.
ContributorsOiler, Jonathon (Author) / Yu, Hongyu (Thesis advisor) / Anbar, Ariel (Committee member) / Hartnett, Hilairy (Committee member) / Scannapieco, Evan (Committee member) / Timmes, Francis (Committee member) / Arizona State University (Publisher)
Created2013
152644-Thumbnail Image.png
Description
This dissertation is presented in two sections. First, I explore two methods of using stable isotope analysis to trace environmental and biogeochemical processes. Second, I present two related studies investigating student understanding of the biogeochemical concepts that underlie part one. Fe and Hg are each biogeochemically important elements in their

This dissertation is presented in two sections. First, I explore two methods of using stable isotope analysis to trace environmental and biogeochemical processes. Second, I present two related studies investigating student understanding of the biogeochemical concepts that underlie part one. Fe and Hg are each biogeochemically important elements in their own way. Fe is a critical nutrient for phytoplankton, while Hg is detrimental to nearly all forms of life. Fe is often a limiting factor in marine phytoplankton growth. The largest source, by mass, of Fe to the open ocean is windblown mineral dust, but other more soluble sources are more bioavailable. To look for evidence of these non-soil dust sources of Fe to the open ocean, I measured the isotopic composition of aerosol samples collected on Bermuda. I found clear evidence in the fine size fraction of a non-soil dust Fe source, which I conclude is most likely from biomass burning. Widespread adoption of compact fluorescent lamps (CFL) has increased their importance as a source of environmental Hg. Isotope analysis would be a useful tool in quantifying this impact if the isotopic composition of Hg from CFL were known. My measurements show that CFL-Hg is isotopically fractionated, in a unique pattern, during normal operation. This fractionation is large and has a distinctive, mass-independent signature, such that CFL Hg can be uniquely identified from other sources. Misconceptions research in geology has been a very active area of research, but student thinking regarding the related field of biogeochemistry has not yet been studied in detail. From interviews with 40 undergraduates, I identified over 150 specific misconceptions. I also designed a multiple-choice survey (concept inventory) to measure understanding of these same biogeochemistry concepts. I present statistical evidence, based on the Rasch model, for the reliability and validity of this instrument. This instrument will allow teachers and researchers to easily quantify learning outcomes in biogeochemistry and will complement existing concept inventories in geology, chemistry, and biology.
ContributorsMead, Chris (Author) / Anbar, Ariel (Thesis advisor) / Semken, Steven (Committee member) / Shock, Everett (Committee member) / Herckes, Pierre (Committee member) / Hartnett, Hilairy (Committee member) / Arizona State University (Publisher)
Created2014
152162-Thumbnail Image.png
Description
Stable isotopes were measured in the groundwaters of the Salt River Valley basin in central Arizona to explore the utility of stable isotopes for sourcing recharge waters and engineering better well designs. Delta values for the sampled groundwaters range from -7.6‰ to -10‰ in 18O and -60‰ to -91‰ in

Stable isotopes were measured in the groundwaters of the Salt River Valley basin in central Arizona to explore the utility of stable isotopes for sourcing recharge waters and engineering better well designs. Delta values for the sampled groundwaters range from -7.6‰ to -10‰ in 18O and -60‰ to -91‰ in D and display displacements off the global meteoric water line indicative of surficial evaporation during river transport into the area. Groundwater in the basin is all derived from top-down river recharge; there is no evidence of ancient playa waters even in the playa deposits. The Salt and Verde Rivers are the dominant source of groundwater for the East Salt River valley- the Agua Fria River also contributes significantly to the West Salt River Valley. Groundwater isotopic compositions are generally more depleted in 18O and D with depth, indicating past recharge in cooler climates, and vary within subsurface aquifer layers as sampled during well drilling. When isotopic data were evaluated together with geologic and chemical analyses and compared with data from the final well production water it was often possible to identify: 1) which horizons are the primary producers of groundwater flow and how that might change with time, 2) the chemical exchange of cations and anions via water-rock interaction during top-down mixing of recharge water with older waters, 3) how much well production might be lost if arsenic-contributing horizons were sealed off, and 4) the extent to which replacement wells tap different subsurface water sources. In addition to identifying sources of recharge, stable isotopes offer a new and powerful approach for engineering better and more productive water wells.
ContributorsBond, Angela Nicole (Author) / Knauth, Paul (Thesis advisor) / Hartnett, Hilairy (Committee member) / Shock, Everett (Committee member) / Arizona State University (Publisher)
Created2010
153329-Thumbnail Image.png
Description
Seismic observations have revealed two large low shear velocity provinces (LLSVPs) in the lowermost mantle beneath Pacific and Africa. One hypothesis for the origin of LLSVPs is that they are caused by accumulation of subducted oceanic crust on the core-mantle boundary (CMB). Here, I perform high resolution geodynamical calculations to

Seismic observations have revealed two large low shear velocity provinces (LLSVPs) in the lowermost mantle beneath Pacific and Africa. One hypothesis for the origin of LLSVPs is that they are caused by accumulation of subducted oceanic crust on the core-mantle boundary (CMB). Here, I perform high resolution geodynamical calculations to test this hypothesis. The result shows that it is difficult for a thin (~ 6 km) subducted oceanic crust to accumulate on the CMB, and the major part of it is viscously stirred into the surrounding mantle. Another hypothesis for the origin of LLSVPs is that they are caused by thermochemical piles of more-primitive material which is remnant of Earth's early differentiation. In such case, a significant part of the subducted oceanic crust would enter the more-primitive reservoir, while other parts are either directly entrained into mantle plumes forming on top of the more-primitive reservoir or stirred into the background mantle. As a result, mantle plumes entrain a variable combination of compositional components including more-primitive material, old oceanic crust which first enters the more-primitive reservoir and is later entrained into mantle plumes with the more-primitive material, young oceanic crust which is directly entrained into mantle plumes without contacting the more-primitive reservoir, and depleted background mantle material. The result reconciles geochemical observation of multiple compositional components and varying ages of oceanic crust in the source of ocean-island basalts. Seismic studies have detected ultra-low velocity zones (ULVZs) in some localized regions on the CMB. Here, I present 3D thermochemical calculations to show that the distribution of ULVZs provides important information about their origin. ULVZs with a distinct composition tend to be located at the edges of LLSVPs, while ULVZs solely caused by partial melting tend to be located inboard from the edges of LLSVPs. This indicates that ULVZs at the edges of LLSVPs are best explained by distinct compositional heterogeneity, while ULVZs located insider of LLSVPs are better explained by partial melting. The results provide additional constraints for the origin of ULVZs.
ContributorsLi, Mingming (Author) / McNamara, Allen K (Thesis advisor) / Garnero, Edward J (Committee member) / Shim, Sang-Heon (Committee member) / Tyburczy, James (Committee member) / Clarke, Amanda (Committee member) / Arizona State University (Publisher)
Created2015
153175-Thumbnail Image.png
Description
Sea ice algae dominated by diatoms inhabit the brine channels of the Arctic sea ice and serve as the base of the Arctic marine food web in the spring. I studied sea ice diatoms in the bottom 10 cm of first year land-fast sea ice off the coast of Barrow,

Sea ice algae dominated by diatoms inhabit the brine channels of the Arctic sea ice and serve as the base of the Arctic marine food web in the spring. I studied sea ice diatoms in the bottom 10 cm of first year land-fast sea ice off the coast of Barrow, AK, in spring of 2011, 2012, and 2013. I investigated the variability in the biomass and the community composition of these sea-ice diatoms between bloom phases, as a function of overlying snow depth and over time. The dominant genera were the pennate diatoms Nitzschia, Navicula, Thalassiothrix, and Fragilariopsis with only a minor contribution by centric diatoms. While diatom biomass as estimated by organic carbon changed significantly between early, peak, and declining bloom phases (average of 1.6 mg C L-1, 5.7 mg C L-1, and 1.0 mg C L-1, respectively), the relative ratio of the dominant diatom groups did not change. However, after export, when the diatoms melt out of the ice into the underlying water, diatom biomass dropped by ~73% and the diatom community shifted to one dominated by centric diatoms. I also found that diatom biomass was ~77% lower under high snow cover (>20 cm) compared to low snow cover (<8 cm); however, the ratio of the diatom categories relative to particulate organic carbon (POC) was again unchanged. The diatom biomass was significantly different between the three sampling years (average of 2.4 mg C L-1 in 2011, 1.1 mg C L-1 in 2012, and 5.4 mg C L-1 in 2013, respectively) as was the contribution of all of the dominant genera to POC. I hypothesize the latter to be due to differences in the history of ice sheet formation each year. The temporal variability of these algal communities will influence their availability for pelagic or benthic consumers. Furthermore, in an Arctic that is changing rapidly with earlier sea ice and snowmelt, this time series study will constitute an important baseline for further studies on how the changing Arctic influences the algal community immured in sea ice.
ContributorsKinzler, Kyle (Author) / Neuer, Susanne (Thesis advisor) / Juhl, Andrew (Committee member) / Hartnett, Hilairy (Committee member) / Arizona State University (Publisher)
Created2014
149817-Thumbnail Image.png
Description
Atmospheric particulate matter has a substantial impact on global climate due to its ability to absorb/scatter solar radiation and act as cloud condensation nuclei (CCN). Yet, little is known about marine aerosol, in particular, the carbonaceous fraction. In the present work, particulate matter was collected, using High Volume (HiVol) samplers,

Atmospheric particulate matter has a substantial impact on global climate due to its ability to absorb/scatter solar radiation and act as cloud condensation nuclei (CCN). Yet, little is known about marine aerosol, in particular, the carbonaceous fraction. In the present work, particulate matter was collected, using High Volume (HiVol) samplers, onto quartz fiber substrates during a series of research cruises on the Atlantic Ocean. Samples were collected on board the R/V Endeavor on West–East (March–April, 2006) and East–West (June–July, 2006) transects in the North Atlantic, as well as on the R/V Polarstern during a North–South (October–November, 2005) transect along the western coast of Europe and Africa. The aerosol total carbon (TC) concentrations for the West–East (Narragansett, RI, USA to Nice, France) and East–West (Heraklion, Crete, Greece to Narragansett, RI, USA) transects were generally low over the open ocean (0.36±0.14 μg C/m3) and increased as the ship approached coastal areas (2.18±1.37 μg C/m3), due to increased terrestrial/anthropogenic aerosol inputs. The TC for the North–South transect samples decreased in the southern hemisphere with the exception of samples collected near the 15th parallel where calculations indicate the air mass back trajectories originated from the continent. Seasonal variation in organic carbon (OC) was seen in the northern hemisphere open ocean samples with average values of 0.45 μg/m3 and 0.26 μg/m3 for spring and summer, respectively. These low summer time values are consistent with SeaWiFS satellite images that show decreasing chlorophyll a concentration (a proxy for phytoplankton biomass) in the summer. There is also a statistically significant (p<0.05) decline in surface water fluorescence in the summer. Moreover, examination of water–soluble organic carbon (WSOC) shows that the summer aerosol samples appear to have a higher fraction of the lower molecular weight material, indicating that the samples may be more oxidized (aged). The seasonal variation in aerosol content seen during the two 2006 cruises is evidence that a primary biological marine source is a significant contributor to the carbonaceous particulate in the marine atmosphere and is consistent with previous studies of clean marine air masses.
ContributorsHill, Hansina Rae (Author) / Herckes, Pierre (Thesis advisor) / Westerhoff, Paul (Committee member) / Hartnett, Hilairy (Committee member) / Arizona State University (Publisher)
Created2011
150749-Thumbnail Image.png
Description
Biological soil crusts (BSCs) are critical components of arid and semiarid environments and provide the primary sources of bioavailable macronutrients and increase micronutrient availability to their surrounding ecosystems. BSCs are composed of a variety of microorganisms that perform a wide range of physiological processes requiring a multitude of bioessential micronutrients,

Biological soil crusts (BSCs) are critical components of arid and semiarid environments and provide the primary sources of bioavailable macronutrients and increase micronutrient availability to their surrounding ecosystems. BSCs are composed of a variety of microorganisms that perform a wide range of physiological processes requiring a multitude of bioessential micronutrients, such as iron, copper, and molybdenum. This work investigated the effects of BSC activity on soil solution concentrations of bioessential elements and examined the microbial production of organic chelators, called siderophores. I found that aluminum, vanadium, copper, zinc, and molybdenum were solubilized in the action of crusts, while nickel, zinc, arsenic, and zirconium were immobilized by crust activity. Potassium and manganese displayed behavior consistent with biological removal and mobilization, whereas phosphorus and iron solubility were dominated by abiotic processes. The addition of bioavailable nitrogen altered the effects of BSCs on soil element mobilization. In addition, I found that the biogeochemical activites of BSCs were limited by molybdenum, a fact that likely contributes to co-limitation by nitrogen. I confirmed the presence of siderophore producing microbes in BSCs. Siderophores are low-molecular weight organic compounds that are released by bacteria to increase element solubility and facilitate element uptake; siderophore production is likely the mechanism by which BSCs affect the patterns I observed in soil solution element concentrations. Siderophore producers were distributed across a range of bacterial groups and ecological niches within crusts, suggesting that siderophore production influences the availability of a variety of elements for use in many physiological processes. Four putative siderophore compounds were identified using electrospray ionization mass spectrometry; further attempts to characterize the compounds confirmed two true siderophores. Taken together, the results of my work provide information about micronutrient cycling within crusts that can be applied to BSC conservation and management. Fertilization with certain elements, particularly molybdenum, may prove to be a useful technique to promote BSC growth and development which would help prevent arid land degradation. Furthermore, understanding the effects of BSCs on soil element mobility could be used to develop useful biomarkers for the study of the existence and distribution of crust-like communities on ancient Earth, and perhaps other places, like Mars.
ContributorsNoonan, Kathryn Alexander (Author) / Hartnett, Hilairy (Thesis advisor) / Anbar, Ariel (Committee member) / Garcia-Pichel, Ferran (Committee member) / Shock, Everett (Committee member) / Sharp, Thomas (Committee member) / Arizona State University (Publisher)
Created2012
151140-Thumbnail Image.png
Description
Molybdenum and uranium isotope variations are potentially powerful tools for reconstructing the paleoredox history of seawater. Reliable application and interpretation of these proxies requires not only detailed knowledge about the fractionation factors that control the distribution of molybdenum and uranium isotopes in the marine system, but also a thorough understanding

Molybdenum and uranium isotope variations are potentially powerful tools for reconstructing the paleoredox history of seawater. Reliable application and interpretation of these proxies requires not only detailed knowledge about the fractionation factors that control the distribution of molybdenum and uranium isotopes in the marine system, but also a thorough understanding of the diagenetic processes that may affect molybdenum and uranium isotopes entering the rock record. Using samples from the Black Sea water column, the first water column profile of 238U/235U variations from a modern euxinic basin has been measured. This profile allows the direct determination of the 238U/235U fractionation factor in a euxinic marine setting. More importantly however, these data demonstrate the extent of Rayleigh fractionation of U isotopes that can occur in euxinic restricted basins. Because of this effect, the offset of 238U/235U between global average seawater and coeval black shales deposited in restricted basins is expected to depend on the degree of local uranium drawdown from the water column, potentially complicating the interpretation 238U/235U paleorecords. As an alternative to the black shales typically used for paleoredox reconstructions, molybdenum and uranium isotope variations in bulk carbonate sediments from the Bahamas are examined. The focus of this work was to determine what processes, if any, fractionate molybdenum and uranium isotopes during incorporation into bulk carbonate sediments and their subsequent diagenesis. The results demonstrate that authigenic accumulation of molybdenum and uranium from anoxic and sulfidic pore waters is a dominant process controlling the concentration and isotopic composition of these sediments during early diagenesis. Examination of ODP drill core samples from the Bahamas reveals similar behavior for sediments during the first ~780ka of burial, but provides important examples where isolated cores and samples occasionally demonstrate additional fractionation, the cause of which remains poorly understood.
ContributorsRomaniello, Stephen J. (Author) / Anbar, Ariel (Thesis advisor) / Hartnett, Hilairy (Committee member) / Herrmann, Achim (Committee member) / Shock, Everett (Committee member) / Wadhwa, Meenakshi (Committee member) / Arizona State University (Publisher)
Created2012