Matching Items (1,605)
Filtering by

Clear all filters

151292-Thumbnail Image.png
Description
In somatic cells, the mitotic spindle apparatus is centrosomal and several isoforms of Protein Kinase C (PKC) have been associated with the mitotic spindle, but their role in stabilizing the mitotic spindle is unclear. Other protein kinases such as, Glycogen Synthase Kinase 3â (GSK3â) also have been shown to be

In somatic cells, the mitotic spindle apparatus is centrosomal and several isoforms of Protein Kinase C (PKC) have been associated with the mitotic spindle, but their role in stabilizing the mitotic spindle is unclear. Other protein kinases such as, Glycogen Synthase Kinase 3â (GSK3â) also have been shown to be associated with the mitotic spindle. In the study in chapter 2, we show the enrichment of active (phosphorylated) PKCæ at the centrosomal region of the spindle apparatus in metaphase stage of 3T3 cells. In order to understand whether the two kinases, PKC and GSK3â are associated with the mitotic spindle, first, the co-localization and close molecular proximity of PKC isoforms with GSK3â was studied in metaphase cells. Second, the involvement of inactive GSK3â in maintaining an intact mitotic spindle was shown. Third, this study showed that addition of a phospho-PKCæ specific inhibitor to cells can disrupt the mitotic spindle microtubules. The mitotic spindle at metaphase in mouse fibroblasts appears to be maintained by PKCæ acting through GSK3â. The MAPK pathway has been implicated in various functions related to cell cycle regulation. MAPKK (MEK) is part of this pathway and the extracellular regulated kinase (ERK) is its known downstream target. GSK3â and PKCæ also have been implicated in cell cycle regulation. In the study in chapter 3, we tested the effects of inhibiting MEK on the activities of ERK, GSK3â, PKCæ, and á-tubulin. Results from this study indicate that inhibition of MEK did not inhibit GSK3â and PKCæ enrichment at the centrosomes. However, the mitotic spindle showed a reduction in the pixel intensity of microtubules and also a reduction in the number of cells in each of the M-phase stages. A peptide activation inhibitor of ERK was also used. Our results indicated a decrease in mitotic spindle microtubules and an absence of cells in most of the M-phase stages. GSK3â and PKCæ enrichment were however not inhibited at the centrosomes. Taken together, the kinases GSK3â and PKCæ may not function as a part of the MAPK pathway to regulate the mitotic spindle.
ContributorsChakravadhanula, Madhavi (Author) / Capco, David G. (Thesis advisor) / Chandler, Douglas (Committee member) / Clark-Curtiss, Josephine (Committee member) / Newfeld, Stuart (Committee member) / Arizona State University (Publisher)
Created2012
152820-Thumbnail Image.png
Description
Malaria is a vector-borne parasitic disease affecting tropical and subtropical regions. Regardless control efforts, malaria incidence is still incredible high with 219 million clinical cases and an estimated 660,000 related deaths (WHO, 2012). In this project, different population genetic approaches were explored to characterize parasite populations. The goal was to

Malaria is a vector-borne parasitic disease affecting tropical and subtropical regions. Regardless control efforts, malaria incidence is still incredible high with 219 million clinical cases and an estimated 660,000 related deaths (WHO, 2012). In this project, different population genetic approaches were explored to characterize parasite populations. The goal was to create a framework that considered temporal and spatial changes of Plasmodium populations in malaria surveillance. This is critical in a vector borne disease in areas of low transmission where there is not accurate information of when and where a patient was infected. In this study, fragment analysis data and single nucleotide polymorphism (SNPs) from South American samples were used to characterize Plasmodium population structure, patterns of migration and gene flow, and discuss approaches to differentiate reinfection vs. recrudescence cases in clinical trials. A Bayesian approach was also applied to analyze the Plasmodium population history by inferring genealogies using microsatellites data. Specifically, fluctuations in the parasite population and the age of different parasite lineages were evaluated through time in order to relate them with the malaria control plan in force. These studies are important to understand the turnover or persistence of "clones" circulating in a specific area through time and consider them in drug efficacy studies. Moreover, this methodology is useful for assessing changes in malaria transmission and for more efficiently manage resources to deploy control measures in locations that act as parasite "sources" for other regions. Overall, these results stress the importance of monitoring malaria demographic changes when assessing the success of elimination programs in areas of low transmission.
ContributorsChenet, Stella M (Author) / Escalante, Ananias A (Thesis advisor) / Clark-Curtiss, Josephine (Committee member) / Rosenberg, Michael (Committee member) / Taylor, Jesse E (Committee member) / Arizona State University (Publisher)
Created2014
153238-Thumbnail Image.png
Description
The viscous lung mucus of cystic fibrosis (CF) patients is characterized by oxygen gradients, which creates a unique niche for bacterial growth. Pseudomonas aeruginosa and Staphylococcus aureus, two predominant microorganisms chronically infecting the airways of CF patients, typically localize in hypoxic regions of the mucus. While interspecies interactions between P.

The viscous lung mucus of cystic fibrosis (CF) patients is characterized by oxygen gradients, which creates a unique niche for bacterial growth. Pseudomonas aeruginosa and Staphylococcus aureus, two predominant microorganisms chronically infecting the airways of CF patients, typically localize in hypoxic regions of the mucus. While interspecies interactions between P. aeruginosa and S. aureus have been reported, little is known about the role of low oxygen in regulating these interactions. Studying interspecies interactions in CF lung disease is important as evidence suggests that microbial community composition governs disease progression. In this study, P. aeruginosa lab strain PAO1 and two primary clinical isolates from hypoxic tissues were cultured alone, or in combination, with methicillin resistant S. aureus (MRSA) strain N315 under hypoxic or normoxic conditions. Herein, it is shown for the first time that low oxygen conditions relevant to the CF lung affect the competitive behavior between P. aeruginosa and S. aureus. Specifically, S. aureus was able to better survive competition in hypoxic versus normoxic conditions. Competition data from different oxygen concentrations were consistent using PAO1 and clinical isolates even though differences in the level of competition were observed. PAO1 strains carrying mutations in virulence factors known to contribute to S. aureus competition (pyocyanin/phzS, elastase/lasA and lasI quorum sensing/lasI) were used to determine which genes play a role in the differential growth inhibition. The lasA and lasI mutants competed less effectively with S. aureus regardless of the oxygen level present in the culture compared to the isogenic wild type strain. These results are consistent with previous findings that elastase and lasI quorum sensing play a role in competitive behavior of P. aeruginosa and S. aureus. Interestingly, the phzS mutant competed less effectively in hypoxic conditions suggesting that pyocyanin may be important in microaerophilic conditions. This study demonstrates that oxygen plays a role in competition between P. aeruginosa and S. aureus and contributes to understanding CF environmental factors that may regulate microbial community dynamics important for disease progression with potential for development of therapeutic avenues.
ContributorsLedesma Barrera, Maria Alexandra (Author) / Nickerson, Cheryl A. (Thesis advisor) / Reyes del Valle, Jorge (Committee member) / Clark-Curtiss, Josephine (Committee member) / Stout, Valerie (Committee member) / Ott, C M (Committee member) / Arizona State University (Publisher)
Created2014
150424-Thumbnail Image.png
Description
The Philadelphia chromosome in humans, is on oncogenic translocation between chromosomes 9 and 22 that gives rise to the fusion protein BCR-Abl. This protein is constitutively active resulting in rapid and uncontrolled cell growth in affected cells. The BCR-Abl protein is the hallmark feature of chronic myeloid leukemia (CML) and

The Philadelphia chromosome in humans, is on oncogenic translocation between chromosomes 9 and 22 that gives rise to the fusion protein BCR-Abl. This protein is constitutively active resulting in rapid and uncontrolled cell growth in affected cells. The BCR-Abl protein is the hallmark feature of chronic myeloid leukemia (CML) and is seen in Philadelphia-positive (Ph+) acute lymphoblastic leukemia (ALL) cases. Currently, the first line of treatment is the Abl specific inhibitor Imatinib. Some patients will, however, develop resistance to Imatinib. Research has shown how transformation of progenitor B cells with v-Abl, an oncogene expressed by the Abelson murine leukemia virus, causes rapid proliferation, prevents further differentiation and produces a potentially malignant transformation. We have used progenitor B cells transformed with a temperature-sensitive form of the v-Abl protein that allows us to inactivate or re-activate v-Abl by shifting the incubation temperature. We are trying to use this line as a model to study both the progression from pre-malignancy to malignancy in CML and Imatinib resistance in Ph+ ALL and CML. These progenitor B cells, once v-Abl is reactivated, in most cases, will not return to their natural cell cycle. In this they resemble Ph+ ALL and CML under Imatinib treatment. With some manipulation these cells can break this prolonged G1 arrested phenotype and become a malignant cell line and resistant to Imatinib treatment. Cellular senescence can be a complicated process requiring inter-play between a variety of players. It serves as an alternate option to apoptosis, in that the cell loses proliferative potential, but does not die. Treatment with some cancer therapeutics will induce senescence in some cancers. Such is the case with Imatinib treatment of CML and Ph+ ALL. By using the S9 cell line we have been able to explore the possible routes for breaking of prolonged G1 arrest in these Ph+ leukemias. We inhibited the DNA damage sensor protein ataxia telangiectasia mutated (ATM) and found that prolonged G1 arrest in our S9 cells was broken. While previous research has suggested that the DNA damage sensor protein ataxia-telangiectasia mutated (ATM) has little impact in CML, our research indicates that ATM may play a role in either senescence induction or release.
ContributorsDixon, Sarah E (Author) / Chang, Yung (Thesis advisor) / Clark-Curtiss, Josephine (Committee member) / Touchman, Jeffrey (Committee member) / Arizona State University (Publisher)
Created2011
150658-Thumbnail Image.png
Description
V(D)J recombination is responsible for generating an enormous repertoire of immunoglobulins and T cell receptors, therefore it is a centerpiece to the formation of the adaptive immune system. The V(D)J recombination process proceeds through two steps, site-specific cleavage at RSS (Recombination Signal Sequence) site mediated by the RAG recombinase (RAG1/2)

V(D)J recombination is responsible for generating an enormous repertoire of immunoglobulins and T cell receptors, therefore it is a centerpiece to the formation of the adaptive immune system. The V(D)J recombination process proceeds through two steps, site-specific cleavage at RSS (Recombination Signal Sequence) site mediated by the RAG recombinase (RAG1/2) and the subsequent imprecise resolution of the DNA ends, which is carried out by the ubiquitous non-homologous end joining pathway (NHEJ). The V(D)J recombination reaction is obliged to be tightly controlled under all circumstances, as it involves generations of DNA double strand breaks, which are considered the most dangerous lesion to a cell. Multifaceted regulatory mechanisms have been evolved to create great diversity of the antigen receptor repertoire while ensuring genome stability. The RAG-mediated cleavage reaction is stringently regulated at both the pre-cleavage stage and the post-cleavage stage. Specifically, RAG1/2 first forms a pre-cleavage complex assembled at the boarder of RSS and coding flank, which ensures the appropriate DNA targeting. Subsequently, this complex initiates site-specific cleavage, generating two types of double stranded DNA breaks, hairpin-ended coding ends (HP-CEs) and blunt signal ends (SEs). After the cleavage, RAG1/2 proteins bind and retain the recombination ends to form post-cleavage complexes (PCC), which collaborates with the NHEJ machinery for appropriate transfer of recombination ends to NHEJ for proper end resolution. However, little is known about the molecular basis of this collaboration, partly attributed to the lack of sensitive assays to reveal the interaction of PCC with HP-CEs. Here, for the first time, by using two complementary fluorescence-based techniques, fluorescence anisotropy and fluorescence resonance energy transfer (FRET), I managed to monitor the RAG1/2-catalyzed cleavage reaction in real time, from the pre-cleavage to the post-cleavage stages. By examining the dynamic fluorescence changes during the RAG-mediated cleavage reactions, and by manipulating the reaction conditions, I was able to characterize some fundamental properties of RAG-DNA interactions before and after cleavage. Firstly, Mg2+, known as a physiological cofactor at the excision step, also promotes the HP-CEs retention in the RAG complex after cleavage. Secondly, the structure of pre-cleavage complex may affect the subsequent collaborations with NHEJ for end resolution. Thirdly, the non-core region of RAG2 may have differential influences on the PCC retention of HP-CEs and SEs. Furthermore, I also provide the first evidence of RAG1-mediated regulation of RAG2. Our study provides important insights into the multilayered regulatory mechanisms, in modulating recombination events in developing lymphocytes and paves the way for possible development of detection and diagnotic markers for defective recombination events that are often associated immunodeficiency and/or lymphoid malignancy.
ContributorsWang, Guannan (Author) / Chang, Yung (Thesis advisor) / Levitus, Marcia (Committee member) / Misra, Rajeev (Committee member) / Anderson, Karen (Committee member) / Arizona State University (Publisher)
Created2012
151143-Thumbnail Image.png
Description
Intrinsic antibiotic resistance is of growing concern in modern medical treatment. The primary action of multidrug resistant strains is through over-expression of active transporters which recognize a broad range of antibiotics. In Escherichia coli, the TolC-AcrAB complex has become a model system to understand antibiotic efflux. While the structures of

Intrinsic antibiotic resistance is of growing concern in modern medical treatment. The primary action of multidrug resistant strains is through over-expression of active transporters which recognize a broad range of antibiotics. In Escherichia coli, the TolC-AcrAB complex has become a model system to understand antibiotic efflux. While the structures of these three proteins (and many of their homologs) are known, the exact mechanisms of interaction are still poorly understood. By mutational analysis of the TolC turn 1 residues, a drug hypersensitive mutant has been identified which is defective in functional interactions with AcrA and AcrB. Antibiotic resistant revertants carry alterations in both TolC and AcrA act by stabilizing functional complex assembly and opening of the TolC aperture, as monitored by stability of a labile TolC mutant and sensitivity to vancomycin, respectively. Alterations in the AcrB periplasmic hairpin loops lead to a similar antibiotic hypersensitivity phenotype and destabilized complex assembly. Likewise, alterations in TolC which constitutively open the aperture suppress this antibiotic sensitivity. Suppressor alterations in AcrA and AcrB partially restore antibiotic resistance by mediating stability of the complex. The AcrA suppressor alterations isolated in these studies map to the three crystallized domains and it is concluded they alter the AcrA conformation such that it is permanently fixed in an active state, which wild type only transiently goes through when activated by AcrB. Through this genetic evidence, a direct interaction between TolC and AcrB which is stabilized by AcrA has been proposed. In addition to stabilizing the interactions between TolC and AcrB, AcrA is also responsible for triggering opening of the TolC aperture by mediating energy flow from AcrB to TolC. By permanently altering the conformation of AcrA, suppressor mutants allow defective TolC or AcrB mutants to regain functional interactions lost by the initial mutations. The data provide the genetic proof for direct interaction between AcrB and that AcrA mediated opening of TolC requires AcrB as a scaffold.
ContributorsWeeks, Jon William (Author) / Misra, Rajeev (Thesis advisor) / Stout, Valerie (Committee member) / Shi, Yixin (Committee member) / Clark-Curtiss, Josephine (Committee member) / Arizona State University (Publisher)
Created2012
154002-Thumbnail Image.png
Description
The discovery and development of novel antibacterial agents is essential to address the rising health concern over antibiotic resistant bacteria. This research investigated the antibacterial activity of a natural clay deposit near Crater Lake, Oregon, that is effective at killing antibiotic resistant human pathogens. The primary rock types in the

The discovery and development of novel antibacterial agents is essential to address the rising health concern over antibiotic resistant bacteria. This research investigated the antibacterial activity of a natural clay deposit near Crater Lake, Oregon, that is effective at killing antibiotic resistant human pathogens. The primary rock types in the deposit are andesitic pyroclastic materials, which have been hydrothermally altered into argillic clay zones. High-sulfidation (acidic) alteration produced clay zones with elevated pyrite (18%), illite-smectite (I-S) (70% illite), elemental sulfur, kaolinite and carbonates. Low-sulfidation alteration at neutral pH generated clay zones with lower pyrite concentrations pyrite (4-6%), the mixed-layered I-S clay rectorite (R1, I-S) and quartz.

Antibacterial susceptibility testing reveals that hydrated clays containing pyrite and I-S are effective at killing (100%) of the model pathogens tested (E. coli and S. epidermidis) when pH (< 4.2) and Eh (> 450 mV) promote pyrite oxidation and mineral dissolution, releasing > 1 mM concentrations of Fe2+, Fe3+ and Al3+. However, certain oxidized clay zones containing no pyrite still inhibited bacterial growth. These clays buffered solutions to low pH (< 4.7) and oxidizing Eh (> 400 mV) conditions, releasing lower amounts (< 1 mM) of Fe and Al. The presence of carbonate in the clays eliminated antibacterial activity due to increases in pH, which lower pyrite oxidation and mineral dissolution rates.

The antibacterial mechanism of these natural clays was explored using metal toxicity and genetic assays, along with advanced bioimaging techniques. Antibacterial clays provide a continuous reservoir of Fe2+, Fe3+ and Al3+ that synergistically attack pathogens while generating hydrogen peroxide (H2O¬2). Results show that dissolved Fe2+ and Al3+ are adsorbed to bacterial envelopes, causing protein misfolding and oxidation in the outer membrane. Only Fe2+ is taken up by the cells, generating oxidative stress that damages DNA and proteins. Excess Fe2+ oxidizes inside the cell and precipitates Fe3+-oxides, marking the sites of hydroxyl radical (•OH) generation. Recognition of this novel geochemical antibacterial process should inform designs of new mineral based antibacterial agents and could provide a new economic industry for such clays.
ContributorsMorrison, Keith D (Author) / Williams, Lynda B (Thesis advisor) / Williams, Stanley N (Thesis advisor) / Misra, Rajeev (Committee member) / Shock, Everett (Committee member) / Anbar, Ariel (Committee member) / Arizona State University (Publisher)
Created2015
156597-Thumbnail Image.png
Description
Lignocellulosic biomass represents a renewable domestic feedstock that can support large-scale biochemical production processes for fuels and specialty chemicals. However, cost-effective conversion of lignocellulosic sugars into valuable chemicals by microorganisms still remains a challenge. Biomass recalcitrance to saccharification, microbial substrate utilization, bioproduct titer toxicity, and toxic chemicals associated with chemical

Lignocellulosic biomass represents a renewable domestic feedstock that can support large-scale biochemical production processes for fuels and specialty chemicals. However, cost-effective conversion of lignocellulosic sugars into valuable chemicals by microorganisms still remains a challenge. Biomass recalcitrance to saccharification, microbial substrate utilization, bioproduct titer toxicity, and toxic chemicals associated with chemical pretreatments are at the center of the bottlenecks limiting further commercialization of lignocellulose conversion. Genetic and metabolic engineering has allowed researchers to manipulate microorganisms to overcome some of these challenges, but new innovative approaches are needed to make the process more commercially viable. Transport proteins represent an underexplored target in genetic engineering that can potentially help to control the input of lignocellulosic substrate and output of products/toxins in microbial biocatalysts. In this work, I characterize and explore the use of transport systems to increase substrate utilization, conserve energy, increase tolerance, and enhance biocatalyst performance.
ContributorsKurgan, Gavin (Author) / Wang, Xuan (Thesis advisor) / Nielsen, David (Committee member) / Misra, Rajeev (Committee member) / Nannenga, Brent (Committee member) / Arizona State University (Publisher)
Created2018
133345-Thumbnail Image.png
Description
The purpose of this study was to observe the effectiveness of the phenylalanyl arginine β-naphthylamide dihydrochloride inhibitor and Tween 20 when combined with an antibiotic against Escherichia. coli. As antibiotic resistance becomes more and more prevalent it is necessary to think outside the box and do more than just increase

The purpose of this study was to observe the effectiveness of the phenylalanyl arginine β-naphthylamide dihydrochloride inhibitor and Tween 20 when combined with an antibiotic against Escherichia. coli. As antibiotic resistance becomes more and more prevalent it is necessary to think outside the box and do more than just increase the dosage of currently prescribed antibiotics. This study attempted to combat two forms of antibiotic resistance. The first is the AcrAB efflux pump which is able to pump antibiotics out of the cell. The second is the biofilms that E. coli can form. By using an inhibitor, the pump should be unable to rid itself of an antibiotic. On the other hand, using Tween allows for biofilm formation to either be disrupted or for the biofilm to be dissolved. By combining these two chemicals with an antibiotic that the efflux pump is known to expel, low concentrations of each chemical should result in an equivalent or greater effect on bacteria compared to any one chemical in higher concentrations. To test this hypothesis a 96 well plate BEC screen test was performed. A range of antibiotics were used at various concentrations and with varying concentrations of both Tween and the inhibitor to find a starting point. Following this, Erythromycin and Ciprofloxacin were picked as the best candidates and the optimum range of the antibiotic, Tween, and inhibitor were established. Finally, all three chemicals were combined to observe the effects they had together as opposed to individually or paired together. From the results of this experiment several conclusions were made. First, the inhibitor did in fact increase the effectiveness of the antibiotic as less antibiotic was needed if the inhibitor was present. Second, Tween showed an ability to prevent recovery in the MBEC reading, showing that it has the ability to disrupt or dissolve biofilms. However, Tween also showed a noticeable decrease in effectiveness in the overall treatment. This negative interaction was unable to be compensated for when using the inhibitor and so the hypothesis was proven false as combining the three chemicals led to a less effective treatment method.
ContributorsPetrovich Flynn, Chandler James (Author) / Misra, Rajeev (Thesis director) / Bean, Heather (Committee member) / Perkins, Kim (Committee member) / Mechanical and Aerospace Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
133352-Thumbnail Image.png
Description
The inherent risk in testing drugs has been hotly debated since the government first started regulating the drug industry in the early 1900s. Who can assume the risks associated with trying new pharmaceuticals is unclear when looked at through society's lens. In the mid twentieth century, the US Food and

The inherent risk in testing drugs has been hotly debated since the government first started regulating the drug industry in the early 1900s. Who can assume the risks associated with trying new pharmaceuticals is unclear when looked at through society's lens. In the mid twentieth century, the US Food and Drug Administration (FDA) published several guidance documents encouraging researchers to exclude women from early clinical drug research. The motivation to publish those documents and the subsequent guidance documents in which the FDA and other regulatory offices established their standpoints on women in drug research may have been connected to current events at the time. The problem of whether women should be involved in drug research is a question of who can assume risk and who is responsible for disseminating what specific kinds of information. The problem tends to be framed as one that juxtaposes the health of women and fetuses and sets their health as in opposition. That opposition, coupled with the inherent uncertainty in testing drugs, provides for a complex set of issues surrounding consent and access to information.
ContributorsMeek, Caroline Jane (Author) / Maienschein, Jane (Thesis director) / Brian, Jennifer (Committee member) / School of Life Sciences (Contributor) / Sanford School of Social and Family Dynamics (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05