Matching Items (72)
149956-Thumbnail Image.png
Description
CMOS technology is expected to enter the 10nm regime for future integrated circuits (IC). Such aggressive scaling leads to vastly increased variability, posing a grand challenge to robust IC design. Variations in CMOS are often divided into two types: intrinsic variations and process-induced variations. Intrinsic variations are limited by fundamental

CMOS technology is expected to enter the 10nm regime for future integrated circuits (IC). Such aggressive scaling leads to vastly increased variability, posing a grand challenge to robust IC design. Variations in CMOS are often divided into two types: intrinsic variations and process-induced variations. Intrinsic variations are limited by fundamental physics. They are inherent to CMOS structure, considered as one of the ultimate barriers to the continual scaling of CMOS devices. In this work the three primary intrinsic variations sources are studied, including random dopant fluctuation (RDF), line-edge roughness (LER) and oxide thickness fluctuation (OTF). The research is focused on the modeling and simulation of those variations and their scaling trends. Besides the three variations, a time dependent variation source, Random Telegraph Noise (RTN) is also studied. Different from the other three variations, RTN does not contribute much to the total variation amount, but aggregate the worst case of Vth variations in CMOS. In this work a TCAD based simulation study on RTN is presented, and a new SPICE based simulation method for RTN is proposed for time domain circuit analysis. Process-induced variations arise from the imperfection in silicon fabrication, and vary from foundries to foundries. In this work the layout dependent Vth shift due to Rapid-Thermal Annealing (RTA) are investigated. In this work, we develop joint thermal/TCAD simulation and compact modeling tools to analyze performance variability under various layout pattern densities and RTA conditions. Moreover, we propose a suite of compact models that bridge the underlying RTA process with device parameter change for efficient design optimization.
ContributorsYe, Yun, Ph.D (Author) / Cao, Yu (Thesis advisor) / Yu, Hongbin (Committee member) / Song, Hongjiang (Committee member) / Clark, Lawrence (Committee member) / Arizona State University (Publisher)
Created2011
150197-Thumbnail Image.png
Description
Ever reducing time to market, along with short product lifetimes, has created a need to shorten the microprocessor design time. Verification of the design and its analysis are two major components of this design cycle. Design validation techniques can be broadly classified into two major categories: simulation based approaches and

Ever reducing time to market, along with short product lifetimes, has created a need to shorten the microprocessor design time. Verification of the design and its analysis are two major components of this design cycle. Design validation techniques can be broadly classified into two major categories: simulation based approaches and formal techniques. Simulation based microprocessor validation involves running millions of cycles using random or pseudo random tests and allows verification of the register transfer level (RTL) model against an architectural model, i.e., that the processor executes instructions as required. The validation effort involves model checking to a high level description or simulation of the design against the RTL implementation. Formal techniques exhaustively analyze parts of the design but, do not verify RTL against the architecture specification. The focus of this work is to implement a fully automated validation environment for a MIPS based radiation hardened microprocessor using simulation based approaches. The basic framework uses the classical validation approach in which the design to be validated is described in a Hardware Definition Language (HDL) such as VHDL or Verilog. To implement a simulation based approach a number of random or pseudo random tests are generated. The output of the HDL based design is compared against the one obtained from a "perfect" model implementing similar functionality, a mismatch in the results would thus indicate a bug in the HDL based design. Effort is made to design the environment in such a manner that it can support validation during different stages of the design cycle. The validation environment includes appropriate changes so as to support architecture changes which are introduced because of radiation hardening. The manner in which the validation environment is build is highly dependent on the specifications of the perfect model used for comparisons. This work implements the validation environment for two MIPS simulators as the reference model. Two bugs have been discovered in the RTL model, using simulation based approaches through the validation environment.
ContributorsSharma, Abhishek (Author) / Clark, Lawrence (Thesis advisor) / Holbert, Keith E. (Committee member) / Shrivastava, Aviral (Committee member) / Arizona State University (Publisher)
Created2011
151533-Thumbnail Image.png
Description
Memories play an integral role in today's advanced ICs. Technology scaling has enabled high density designs at the price paid for impact due to variability and reliability. It is imperative to have accurate methods to measure and extract the variability in the SRAM cell to produce accurate reliability projections for

Memories play an integral role in today's advanced ICs. Technology scaling has enabled high density designs at the price paid for impact due to variability and reliability. It is imperative to have accurate methods to measure and extract the variability in the SRAM cell to produce accurate reliability projections for future technologies. This work presents a novel test measurement and extraction technique which is non-invasive to the actual operation of the SRAM memory array. The salient features of this work include i) A single ended SRAM test structure with no disturbance to SRAM operations ii) a convenient test procedure that only requires quasi-static control of external voltages iii) non-iterative method that extracts the VTH variation of each transistor from eight independent switch point measurements. With the present day technology scaling, in addition to the variability with the process, there is also the impact of other aging mechanisms which become dominant. The various aging mechanisms like Negative Bias Temperature Instability (NBTI), Channel Hot Carrier (CHC) and Time Dependent Dielectric Breakdown (TDDB) are critical in the present day nano-scale technology nodes. In this work, we focus on the impact of NBTI due to aging in the SRAM cell and have used Trapping/De-Trapping theory based log(t) model to explain the shift in threshold voltage VTH. The aging section focuses on the following i) Impact of Statistical aging in PMOS device due to NBTI dominates the temporal shift of SRAM cell ii) Besides static variations , shifting in VTH demands increased guard-banding margins in design stage iii) Aging statistics remain constant during the shift, presenting a secondary effect in aging prediction. iv) We have investigated to see if the aging mechanism can be used as a compensation technique to reduce mismatch due to process variations. Finally, the entire test setup has been tested in SPICE and also validated with silicon and the results are presented. The method also facilitates the study of design metrics such as static, read and write noise margins and also the data retention voltage and thus help designers to improve the cell stability of SRAM.
ContributorsRavi, Venkatesa (Author) / Cao, Yu (Thesis advisor) / Bakkaloglu, Bertan (Committee member) / Clark, Lawrence (Committee member) / Arizona State University (Publisher)
Created2013
152421-Thumbnail Image.png
Description
ABSTRACT The D flip flop acts as a sequencing element while designing any pipelined system. Radiation Hardening by Design (RHBD) allows hardened circuits to be fabricated on commercially available CMOS manufacturing process. Recently, single event transients (SET's) have become as important as single event upset (SEU) in radiation hardened high

ABSTRACT The D flip flop acts as a sequencing element while designing any pipelined system. Radiation Hardening by Design (RHBD) allows hardened circuits to be fabricated on commercially available CMOS manufacturing process. Recently, single event transients (SET's) have become as important as single event upset (SEU) in radiation hardened high speed digital designs. A novel temporal pulse based RHBD flip-flop design is presented. Temporally delayed pulses produced by a radiation hardened pulse generator design samples the data in three redundant pulse latches. The proposed RHBD flip-flop has been statistically designed and fabricated on 90 nm TSMC LP process. Detailed simulations of the flip-flop operation in both normal and radiation environments are presented. Spatial separation of critical nodes for the physical design of the flip-flop is carried out for mitigating multi-node charge collection upsets. The proposed flip-flop is also used in commercial CAD flows for high performance chip designs. The proposed flip-flop is used in the design and auto-place-route (APR) of an advanced encryption system and the metrics analyzed.
ContributorsKumar, Sushil (Author) / Clark, Lawrence (Thesis advisor) / Bakkaloglu, Bertan (Committee member) / Ogras, Umit Y. (Committee member) / Arizona State University (Publisher)
Created2014
150743-Thumbnail Image.png
Description
Thanks to continuous technology scaling, intelligent, fast and smaller digital systems are now available at affordable costs. As a result, digital systems have found use in a wide range of application areas that were not even imagined before, including medical (e.g., MRI, remote or post-operative monitoring devices, etc.), automotive (e.g.,

Thanks to continuous technology scaling, intelligent, fast and smaller digital systems are now available at affordable costs. As a result, digital systems have found use in a wide range of application areas that were not even imagined before, including medical (e.g., MRI, remote or post-operative monitoring devices, etc.), automotive (e.g., adaptive cruise control, anti-lock brakes, etc.), security systems (e.g., residential security gateways, surveillance devices, etc.), and in- and out-of-body sensing (e.g., capsule swallowed by patients measuring digestive system pH, heart monitors, etc.). Such computing systems, which are completely embedded within the application, are called embedded systems, as opposed to general purpose computing systems. In the design of such embedded systems, power consumption and reliability are indispensable system requirements. In battery operated portable devices, the battery is the single largest factor contributing to device cost, weight, recharging time, frequency and ultimately its usability. For example, in the Apple iPhone 4 smart-phone, the battery is $40\%$ of the device weight, occupies $36\%$ of its volume and allows only $7$ hours (over 3G) of talk time. As embedded systems find use in a range of sensitive applications, from bio-medical applications to safety and security systems, the reliability of the computations performed becomes a crucial factor. At our current technology-node, portable embedded systems are prone to expect failures due to soft errors at the rate of once-per-year; but with aggressive technology scaling, the rate is predicted to increase exponentially to once-per-hour. Over the years, researchers have been successful in developing techniques, implemented at different layers of the design-spectrum, to improve system power efficiency and reliability. Among the layers of design abstraction, I observe that the interface between the compiler and processor micro-architecture possesses a unique potential for efficient design optimizations. A compiler designer is able to observe and analyze the application software at a finer granularity; while the processor architect analyzes the system output (power, performance, etc.) for each executed instruction. At the compiler micro-architecture interface, if the system knowledge at the two design layers can be integrated, design optimizations at the two layers can be modified to efficiently utilize available resources and thereby achieve appreciable system-level benefits. To this effect, the thesis statement is that, ``by merging system design information at the compiler and micro-architecture design layers, smart compilers can be developed, that achieve reliable and power-efficient embedded computing through: i) Pure compiler techniques, ii) Hybrid compiler micro-architecture techniques, and iii) Compiler-aware architectures''. In this dissertation demonstrates, through contributions in each of the three compiler-based techniques, the effectiveness of smart compilers in achieving power-efficiency and reliability in embedded systems.
ContributorsJeyapaul, Reiley (Author) / Shrivastava, Aviral (Thesis advisor) / Vrudhula, Sarma (Committee member) / Clark, Lawrence (Committee member) / Colbourn, Charles (Committee member) / Arizona State University (Publisher)
Created2012
151254-Thumbnail Image.png
Description
Negative bias temperature instability (NBTI) is a leading aging mechanism in modern digital and analog circuits. Recent NBTI data exhibits an excessive amount of randomness and fast recovery, which are difficult to be handled by conventional power-law model (tn). Such discrepancies further pose the challenge on long-term reliability prediction under

Negative bias temperature instability (NBTI) is a leading aging mechanism in modern digital and analog circuits. Recent NBTI data exhibits an excessive amount of randomness and fast recovery, which are difficult to be handled by conventional power-law model (tn). Such discrepancies further pose the challenge on long-term reliability prediction under statistical variations and Dynamic Voltage Scaling (DVS) in real circuit operation. To overcome these barriers, the modeling effort in this work (1) practically explains the aging statistics due to randomness in number of traps with log(t) model, accurately predicting the mean and variance shift; (2) proposes cycle-to-cycle model (from the first-principle of trapping) to handle aging under multiple supply voltages, predicting the non-monotonic behavior under DVS (3) presents a long-term model to estimate a tight upper bound of dynamic aging over multiple cycles, and (4) comprehensively validates the new set of aging models with 65nm statistical silicon data. Compared to previous models, the new set of aging models capture the aging variability and the essential role of the recovery phase under DVS, reducing unnecessary guard-banding during the design stage. With CMOS technology scaling, design for reliability has become an important step in the design cycle, and increased the need for efficient and accurate aging simulation methods during the design stage. NBTI induced delay shifts in logic paths are asymmetric in nature, as opposed to averaging effect due to recovery assumed in traditional aging analysis. Timing violations due to aging, in particular, are very sensitive to the standby operation regime of a digital circuit. In this report, by identifying the critical moments in circuit operation and considering the asymmetric aging effects, timing violations under NBTI effect are correctly predicted. The unique contributions of the simulation flow include: (1) accurate modeling of aging induced delay shift due to threshold voltage (Vth) shift using only the delay dependence on supply voltage from cell library; (2) simulation flow for asymmetric aging analysis is proposed and conducted at critical points in circuit operation; (3) setup and hold timing violations due to NBTI aging in logic and clock buffer are investigated in sequential circuits and (4) proposed framework is tested in VLSI applications such DDR memory circuits. This methodology is comprehensively demonstrated with ISCAS89 benchmark circuits using a 45nm Nangate standard cell library characterized using predictive technology models. Our proposed design margin assessment provides design insights and enables resilient techniques for mitigating digital circuit aging.
ContributorsVelamala, Jyothi Bhaskarr (Author) / Cao, Yu (Thesis advisor) / Clark, Lawrence (Committee member) / Chakrabarti, Chaitali (Committee member) / Yu, Hongbin (Committee member) / Arizona State University (Publisher)
Created2012
149343-Thumbnail Image.png
Description
Threshold logic has long been studied as a means of achieving higher performance and lower power dissipation, providing improvements by condensing simple logic gates into more complex primitives, effectively reducing gate count, pipeline depth, and number of interconnects. This work proposes a new physical implementation of threshold logic, the threshold

Threshold logic has long been studied as a means of achieving higher performance and lower power dissipation, providing improvements by condensing simple logic gates into more complex primitives, effectively reducing gate count, pipeline depth, and number of interconnects. This work proposes a new physical implementation of threshold logic, the threshold logic latch (TLL), which overcomes the difficulties observed in previous work, particularly with respect to gate reliability in the presence of noise and process variations. Simple but effective models were created to assess the delay, power, and noise margin of TLL gates for the purpose of determining the physical parameters and assignment of input signals that achieves the lowest delay subject to constraints on power and reliability. From these models, an optimized library of standard TLL cells was developed to supplement a commercial library of static CMOS gates. The new cells were then demonstrated on a number of automatically synthesized, placed, and routed designs. A two-stage 2's complement integer multiplier designed with CMOS and TLL gates utilized 19.5% less area, 28.0% less active power, and 61.5% less leakage power than an equivalent design with the same performance using only static CMOS gates. Additionally, a two-stage 32-instruction 4-way issue queue designed with CMOS and TLL gates utilized 30.6% less area, 31.0% less active power, and 58.9% less leakage power than an equivalent design with the same performance using only static CMOS gates.
ContributorsLeshner, Samuel (Author) / Vrudhula, Sarma (Thesis advisor) / Chatha, Karamvir (Committee member) / Clark, Lawrence (Committee member) / Shrivastava, Aviral (Committee member) / Arizona State University (Publisher)
Created2010
149553-Thumbnail Image.png
Description
To extend the lifetime of complementary metal-oxide-semiconductors (CMOS), emerging process techniques are being proposed to conquer the manufacturing difficulties. New structures and materials are proposed with superior electrical properties to traditional CMOS, such as strain technology and feedback field-effect transistor (FB-FET). To continue the design success and make an impact

To extend the lifetime of complementary metal-oxide-semiconductors (CMOS), emerging process techniques are being proposed to conquer the manufacturing difficulties. New structures and materials are proposed with superior electrical properties to traditional CMOS, such as strain technology and feedback field-effect transistor (FB-FET). To continue the design success and make an impact on leading products, advanced circuit design exploration must begin concurrently with early silicon development. Therefore, an accurate and scalable model is desired to correctly capture those effects and flexible to extend to alternative process choices. For example, strain technology has been successfully integrated into CMOS fabrication to improve transistor performance but the stress is non-uniformly distributed in the channel, leading to systematic performance variations. In this dissertation, a new layout-dependent stress model is proposed as a function of layout, temperature, and other device parameters. Furthermore, a method of layout decomposition is developed to partition the layout into a set of simple patterns for model extraction. These solutions significantly reduce the complexity in stress modeling and simulation. On the other hand, semiconductor devices with self-feedback mechanisms are emerging as promising alternatives to CMOS. Fe-FET was proposed to improve the switching by integrating a ferroelectric material as gate insulator in a MOSFET structure. Under particular circumstances, ferroelectric capacitance is effectively negative, due to the negative slope of its polarization-electrical field curve. This property makes the ferroelectric layer a voltage amplifier to boost surface potential, achieving fast transition. A new threshold voltage model for Fe-FET is developed, and is further revealed that the impact of random dopant fluctuation (RDF) can be suppressed. Furthermore, through silicon via (TSV), a key technology that enables the 3D integration of chips, is studied. TSV structure is usually a cylindrical metal-oxide-semiconductors (MOS) capacitor. A piecewise capacitance model is proposed for 3D interconnect simulation. Due to the mismatch in coefficients of thermal expansion (CTE) among materials, thermal stress is observed in TSV process and impacts neighboring devices. The stress impact is investigated to support the interaction between silicon process and IC design at the early stage.
ContributorsWang, Chi-Chao (Author) / Cao, Yu (Thesis advisor) / Chakrabarti, Chaitali (Committee member) / Clark, Lawrence (Committee member) / Schroder, Dieter (Committee member) / Arizona State University (Publisher)
Created2011
135132-Thumbnail Image.png
Description
The purpose of the Very Long Instruction Word (VLIW) Remotely Reconfigurable DSP Element is to use VLIW as a design process and to design hardware components of a reconfigurable DSP Element and ascertaining the overall length of the Very Long Instruction Word. This project is focused solely on hardware components

The purpose of the Very Long Instruction Word (VLIW) Remotely Reconfigurable DSP Element is to use VLIW as a design process and to design hardware components of a reconfigurable DSP Element and ascertaining the overall length of the Very Long Instruction Word. This project is focused solely on hardware components being designed by hand with regards to certain specifications deemed by General Dynamics Mission Systems, and using the designs, finding the overall length of the VLIW for use in future work. To design each of the elements, General Dynamics had specified several requirements. Each element was then designed individually according to the requirements. After the initial design, each was sent back for a design review from General Dynamics, and after revision, all parts were linked together for an overall calculation on the length of the VLIW. VLIW Reconfigurable DSP Elements is not a new concept, but has yet to have a proof of concept published. Future work includes a proof of concept with software (done by the ASU Capstone team), then future development by General Dynamics. Should they choose to continue with this project, they will continue testing on FPGA boards, and perhaps future development into an ASIC. Overall the purpose of General Dynamics for proposing this project is for deep space payloads, for which this project has the most applications.
ContributorsYiin, Nathan Kehan (Author) / Clark, Lawrence (Thesis director) / Aberle, James (Committee member) / Electrical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
Description
Due to high DRAM access latency and energy, several convolutional neural network(CNN) accelerators face performance and energy efficiency challenges, which are critical for embedded implementations. As these applications exploit larger datasets, memory accesses of these emerging applications are increasing. As a result, it is difficult to predict the combined

Due to high DRAM access latency and energy, several convolutional neural network(CNN) accelerators face performance and energy efficiency challenges, which are critical for embedded implementations. As these applications exploit larger datasets, memory accesses of these emerging applications are increasing. As a result, it is difficult to predict the combined dynamic random access memory (DRAM) workload behavior, which can sabotage memory optimizations in software. To understand the impact of external memory access on CNN accelerators which reduces the high DRAMaccess latency and energy, simulators such as RAMULATOR and VAMPIRE have been proposed in prior work. In this work, we utilize these simulators to benchmark external memory access in CNN accelerators. Experiments are performed generating trace files based on the number of parameters and data precision and also using trace file generated for CNN Accelerator Altera Arria 10 GX 1150 FPGA data to complete the end to end workflow using the mentioned simulators. Besides that, certain modifications were made in the default VAMPIRE code to implement certain functionalities such as PREA(Precharge All) and REF(Refresh). Then, precalculated energies were computed for DDR3, DDR4, and HBM based on the micron model to mention it in the dram specification file inputted to the VAMPIRE tool. An experimental study was performed and a comparison is made between DDR3, DDR4, and HBM, it was proved that DDR4 is nearly 31% more energy-efficient than DDR3 and HBMis 54% energy-efficient than DDR3. Performed modeling and experimental analysis on a large set of data and then split it into a set of data and compared the results of the small sets multiplied with the number of sets and the large data set and concluded that the results were nearly the same. Finally, a GUI is developed by wrapping both the simulators. GUI provides user-friendly access and can analyze the parameters without much prior knowledge and understanding of the working.
ContributorsPannala, Manvitha (Author) / Cao, Yu (Thesis advisor) / Chakrabarti, Chaitali (Committee member) / Seo, Jae-Sun (Committee member) / Arizona State University (Publisher)
Created2021