Matching Items (126)
150046-Thumbnail Image.png
Description
This thesis describes a synthetic task environment, CyberCog, created for the purposes of 1) understanding and measuring individual and team situation awareness in the context of a cyber security defense task and 2) providing a context for evaluating algorithms, visualizations, and other interventions that are intended to improve cyber situation

This thesis describes a synthetic task environment, CyberCog, created for the purposes of 1) understanding and measuring individual and team situation awareness in the context of a cyber security defense task and 2) providing a context for evaluating algorithms, visualizations, and other interventions that are intended to improve cyber situation awareness. CyberCog provides an interactive environment for conducting human-in-loop experiments in which the participants of the experiment perform the tasks of a cyber security defense analyst in response to a cyber-attack scenario. CyberCog generates the necessary performance measures and interaction logs needed for measuring individual and team cyber situation awareness. Moreover, the CyberCog environment provides good experimental control for conducting effective situation awareness studies while retaining realism in the scenario and in the tasks performed.
ContributorsRajivan, Prashanth (Author) / Femiani, John (Thesis advisor) / Cooke, Nancy J. (Thesis advisor) / Lindquist, Timothy (Committee member) / Gary, Kevin (Committee member) / Arizona State University (Publisher)
Created2011
149644-Thumbnail Image.png
Description
Intuitive decision making refers to decision making based on situational pattern recognition, which happens without deliberation. It is a fast and effortless process that occurs without complete awareness. Moreover, it is believed that implicit learning is one means by which a foundation for intuitive decision making is developed. Accordingly, the

Intuitive decision making refers to decision making based on situational pattern recognition, which happens without deliberation. It is a fast and effortless process that occurs without complete awareness. Moreover, it is believed that implicit learning is one means by which a foundation for intuitive decision making is developed. Accordingly, the present study investigated several factors that affect implicit learning and the development of intuitive decision making in a simulated real-world environment: (1) simple versus complex situational patterns; (2) the diversity of the patterns to which an individual is exposed; (3) the underlying mechanisms. The results showed that simple patterns led to higher levels of implicit learning and intuitive decision-making accuracy than complex patterns; increased diversity enhanced implicit learning and intuitive decision-making accuracy; and an embodied mechanism, labeling, contributes to the development of intuitive decision making in a simulated real-world environment. The results suggest that simulated real-world environments can provide the basis for training intuitive decision making, that diversity is influential in the process of training intuitive decision making, and that labeling contributes to the development of intuitive decision making. These results are interpreted in the context of applied situations such as military applications involving remotely piloted aircraft.
ContributorsCovas-Smith, Christine Marie (Author) / Cooke, Nancy J. (Thesis advisor) / Patterson, Robert (Committee member) / Glenberg, Arthur (Committee member) / Homa, Donald (Committee member) / Arizona State University (Publisher)
Created2011
149956-Thumbnail Image.png
Description
CMOS technology is expected to enter the 10nm regime for future integrated circuits (IC). Such aggressive scaling leads to vastly increased variability, posing a grand challenge to robust IC design. Variations in CMOS are often divided into two types: intrinsic variations and process-induced variations. Intrinsic variations are limited by fundamental

CMOS technology is expected to enter the 10nm regime for future integrated circuits (IC). Such aggressive scaling leads to vastly increased variability, posing a grand challenge to robust IC design. Variations in CMOS are often divided into two types: intrinsic variations and process-induced variations. Intrinsic variations are limited by fundamental physics. They are inherent to CMOS structure, considered as one of the ultimate barriers to the continual scaling of CMOS devices. In this work the three primary intrinsic variations sources are studied, including random dopant fluctuation (RDF), line-edge roughness (LER) and oxide thickness fluctuation (OTF). The research is focused on the modeling and simulation of those variations and their scaling trends. Besides the three variations, a time dependent variation source, Random Telegraph Noise (RTN) is also studied. Different from the other three variations, RTN does not contribute much to the total variation amount, but aggregate the worst case of Vth variations in CMOS. In this work a TCAD based simulation study on RTN is presented, and a new SPICE based simulation method for RTN is proposed for time domain circuit analysis. Process-induced variations arise from the imperfection in silicon fabrication, and vary from foundries to foundries. In this work the layout dependent Vth shift due to Rapid-Thermal Annealing (RTA) are investigated. In this work, we develop joint thermal/TCAD simulation and compact modeling tools to analyze performance variability under various layout pattern densities and RTA conditions. Moreover, we propose a suite of compact models that bridge the underlying RTA process with device parameter change for efficient design optimization.
ContributorsYe, Yun, Ph.D (Author) / Cao, Yu (Thesis advisor) / Yu, Hongbin (Committee member) / Song, Hongjiang (Committee member) / Clark, Lawrence (Committee member) / Arizona State University (Publisher)
Created2011
150067-Thumbnail Image.png
Description
The objective of this project was to evaluate human factors based cognitive aids on endoscope reprocessing. The project stems from recent failures in reprocessing (cleaning) endoscopes, contributing to the spread of harmful bacterial and viral agents between patients. Three themes were found to represent a majority of problems:

The objective of this project was to evaluate human factors based cognitive aids on endoscope reprocessing. The project stems from recent failures in reprocessing (cleaning) endoscopes, contributing to the spread of harmful bacterial and viral agents between patients. Three themes were found to represent a majority of problems: 1) lack of visibility (parts and tools were difficult to identify), 2) high memory demands, and 3) insufficient user feedback. In an effort to improve completion rate and eliminate error, cognitive aids were designed utilizing human factors principles that would replace existing manufacturer visual aids. Then, a usability test was conducted, which compared the endoscope reprocessing performance of novices using the standard manufacturer-provided visual aids and the new cognitive aids. Participants successfully completed 87.1% of the reprocessing procedure in the experimental condition with the use of the cognitive aids, compared to 46.3% in the control condition using only existing support materials. Twenty-five of sixty subtasks showed significant improvement in completion rates. When given a cognitive aid designed with human factors principles, participants were able to more successfully complete the reprocessing task. This resulted in an endoscope that was more likely to be safe for patient use.
ContributorsJolly, Jonathan D (Author) / Branaghan, Russell J (Thesis advisor) / Cooke, Nancy J. (Committee member) / Sanchez, Christopher (Committee member) / Arizona State University (Publisher)
Created2011
150197-Thumbnail Image.png
Description
Ever reducing time to market, along with short product lifetimes, has created a need to shorten the microprocessor design time. Verification of the design and its analysis are two major components of this design cycle. Design validation techniques can be broadly classified into two major categories: simulation based approaches and

Ever reducing time to market, along with short product lifetimes, has created a need to shorten the microprocessor design time. Verification of the design and its analysis are two major components of this design cycle. Design validation techniques can be broadly classified into two major categories: simulation based approaches and formal techniques. Simulation based microprocessor validation involves running millions of cycles using random or pseudo random tests and allows verification of the register transfer level (RTL) model against an architectural model, i.e., that the processor executes instructions as required. The validation effort involves model checking to a high level description or simulation of the design against the RTL implementation. Formal techniques exhaustively analyze parts of the design but, do not verify RTL against the architecture specification. The focus of this work is to implement a fully automated validation environment for a MIPS based radiation hardened microprocessor using simulation based approaches. The basic framework uses the classical validation approach in which the design to be validated is described in a Hardware Definition Language (HDL) such as VHDL or Verilog. To implement a simulation based approach a number of random or pseudo random tests are generated. The output of the HDL based design is compared against the one obtained from a "perfect" model implementing similar functionality, a mismatch in the results would thus indicate a bug in the HDL based design. Effort is made to design the environment in such a manner that it can support validation during different stages of the design cycle. The validation environment includes appropriate changes so as to support architecture changes which are introduced because of radiation hardening. The manner in which the validation environment is build is highly dependent on the specifications of the perfect model used for comparisons. This work implements the validation environment for two MIPS simulators as the reference model. Two bugs have been discovered in the RTL model, using simulation based approaches through the validation environment.
ContributorsSharma, Abhishek (Author) / Clark, Lawrence (Thesis advisor) / Holbert, Keith E. (Committee member) / Shrivastava, Aviral (Committee member) / Arizona State University (Publisher)
Created2011
150085-Thumbnail Image.png
Description
The wood-framing trade has not sufficiently been investigated to understand the work task sequencing and coordination among crew members. A new mental framework for a performing crew was developed and tested through four case studies. This framework ensured similar team performance as the one provided by task micro-scheduling in planning

The wood-framing trade has not sufficiently been investigated to understand the work task sequencing and coordination among crew members. A new mental framework for a performing crew was developed and tested through four case studies. This framework ensured similar team performance as the one provided by task micro-scheduling in planning software. It also allowed evaluation of the effect of individual coordination within the crew on the crew's productivity. Using design information, a list of micro-activities/tasks and their predecessors was automatically generated for each piece of lumber in the four wood frames. The task precedence was generated by applying elementary geometrical and technological reasoning to each frame. Then, the duration of each task was determined based on observations from videotaped activities. Primavera's (P6) resource leveling rules were used to calculate the sequencing of tasks and the minimum duration of the whole activity for various crew sizes. The results showed quick convergence towards the minimum production time and allowed to use information from Building Information Models (BIM) to automatically establish the optimal crew sizes for frames. Late Start (LS) leveling priority rule gave the shortest duration in every case. However, the logic of LS tasks rule is too complex to be conveyed to the framing crew. Therefore, the new mental framework of a well performing framer was developed and tested to ensure high coordination. This mental framework, based on five simple rules, can be easily taught to the crew and ensures a crew productivity congruent with the one provided by the LS logic. The case studies indicate that once the worst framer in the crew surpasses the limit of 11% deviation from applying the said five rules, every additional percent of deviation reduces the productivity of the whole crew by about 4%.
ContributorsMaghiar, Marcel M (Author) / Wiezel, Avi (Thesis advisor) / Mitropoulos, Panagiotis (Committee member) / Cooke, Nancy J. (Committee member) / Arizona State University (Publisher)
Created2011
150139-Thumbnail Image.png
Description
Although there are many forms of organization on the Web, one of the most prominent ways to organize web content and websites are tags. Tags are keywords or terms that are assigned to a specific piece of content in order to help users understand the common relationships between pieces of

Although there are many forms of organization on the Web, one of the most prominent ways to organize web content and websites are tags. Tags are keywords or terms that are assigned to a specific piece of content in order to help users understand the common relationships between pieces of content. Tags can either be assigned by an algorithm, the author, or the community. These tags can also be organized into tag clouds, which are visual representations of the structure and organization contained implicitly within these tags. Importantly, little is known on how we use these different tagging structures to understand the content and structure of a given site. This project examines 2 different characteristics of tagging structures: font size and spatial orientation. In order to examine how these different characteristics might interact with individual differences in attentional control, a measure of working memory capacity (WMC) was included. The results showed that spatial relationships affect how well users understand the structure of a website. WMC was not shown to have any significant effect; neither was varying the font size. These results should better inform how tags and tag clouds are used on the Web, and also provide an estimation of what properties to include when designing and implementing a tag cloud on a website.
ContributorsBanas, Steven (Author) / Sanchez, Christopher A (Thesis advisor) / Branaghan, Russell (Committee member) / Cooke, Nancy J. (Committee member) / Arizona State University (Publisher)
Created2011
152215-Thumbnail Image.png
Description
As the desire for innovation increases, individuals and companies seek reliable ways to encourage their creative side. There are many office superstitions about how creativity works, but few are based on psychological science and even fewer have been tested empirically. One of the most prevalent superstitions is the use of

As the desire for innovation increases, individuals and companies seek reliable ways to encourage their creative side. There are many office superstitions about how creativity works, but few are based on psychological science and even fewer have been tested empirically. One of the most prevalent superstitions is the use of objects to inspire creativity or even make a creative room. It is important to test this kind of notion so workplaces can find reliable ways to be innovative, but also because psychology lacks a breadth of literature on how environmental cues interact with people to shape their mental state. This experiment seeks to examine those gaps and fill in the next steps needed for examining at how multiple objects prime creativity. Participants completed two creativity tasks: one for idea generation and one that relies on insight problem solving, the Remote Association Task. There were four priming conditions that relied on objects: a zero object condition, a four neutral (office) objects condition, a single artistic object condition, and finally a four artistic objects condition. There were no differences found between groups for either type of task or in mood or artistic experience. The number of years a participant spent in the United States, however, did correlate with mood, idea generation scores, and insight problem scores. This potentially demonstrates that performance on idea generation and insight tasks rely on the tasks created and culture.
ContributorsJariwala, Shree (Author) / Branaghan, Russell (Thesis advisor) / Cooke, Nancy J. (Committee member) / Song, Hyunjin (Committee member) / Arizona State University (Publisher)
Created2013
151325-Thumbnail Image.png
Description
As technology enhances our communication capabilities, the number of distributed teams has risen in both public and private sectors. There is no doubt that these technological advancements have addressed a need for communication and collaboration of distributed teams. However, is all technology useful for effective collaboration? Are some methods (modalities)

As technology enhances our communication capabilities, the number of distributed teams has risen in both public and private sectors. There is no doubt that these technological advancements have addressed a need for communication and collaboration of distributed teams. However, is all technology useful for effective collaboration? Are some methods (modalities) of communication more conducive than others to effective performance and collaboration of distributed teams? Although previous literature identifies some differences in modalities, there is little research on geographically distributed mobile teams (DMTs) performing a collaborative task. To investigate communication and performance in this context, I developed the GeoCog system. This system is a mobile communications and collaboration platform enabling small, distributed teams of three to participate in a variant of the military-inspired game, "Capture the Flag". Within the task, teams were given one hour to complete as many "captures" as possible while utilizing resources to the advantage of the team. In this experiment, I manipulated the modality of communication across three conditions with text-based messaging only, vocal communication only, and a combination of the two conditions. It was hypothesized that bi-modal communication would yield superior performance compared to either single modality conditions. Results indicated that performance was not affected by modality. Further results, including communication analysis, are discussed within this paper.
ContributorsChampion, Michael (Author) / Cooke, Nancy J. (Thesis advisor) / Shope, Steven (Committee member) / Wu, Bing (Committee member) / Arizona State University (Publisher)
Created2012
151533-Thumbnail Image.png
Description
Memories play an integral role in today's advanced ICs. Technology scaling has enabled high density designs at the price paid for impact due to variability and reliability. It is imperative to have accurate methods to measure and extract the variability in the SRAM cell to produce accurate reliability projections for

Memories play an integral role in today's advanced ICs. Technology scaling has enabled high density designs at the price paid for impact due to variability and reliability. It is imperative to have accurate methods to measure and extract the variability in the SRAM cell to produce accurate reliability projections for future technologies. This work presents a novel test measurement and extraction technique which is non-invasive to the actual operation of the SRAM memory array. The salient features of this work include i) A single ended SRAM test structure with no disturbance to SRAM operations ii) a convenient test procedure that only requires quasi-static control of external voltages iii) non-iterative method that extracts the VTH variation of each transistor from eight independent switch point measurements. With the present day technology scaling, in addition to the variability with the process, there is also the impact of other aging mechanisms which become dominant. The various aging mechanisms like Negative Bias Temperature Instability (NBTI), Channel Hot Carrier (CHC) and Time Dependent Dielectric Breakdown (TDDB) are critical in the present day nano-scale technology nodes. In this work, we focus on the impact of NBTI due to aging in the SRAM cell and have used Trapping/De-Trapping theory based log(t) model to explain the shift in threshold voltage VTH. The aging section focuses on the following i) Impact of Statistical aging in PMOS device due to NBTI dominates the temporal shift of SRAM cell ii) Besides static variations , shifting in VTH demands increased guard-banding margins in design stage iii) Aging statistics remain constant during the shift, presenting a secondary effect in aging prediction. iv) We have investigated to see if the aging mechanism can be used as a compensation technique to reduce mismatch due to process variations. Finally, the entire test setup has been tested in SPICE and also validated with silicon and the results are presented. The method also facilitates the study of design metrics such as static, read and write noise margins and also the data retention voltage and thus help designers to improve the cell stability of SRAM.
ContributorsRavi, Venkatesa (Author) / Cao, Yu (Thesis advisor) / Bakkaloglu, Bertan (Committee member) / Clark, Lawrence (Committee member) / Arizona State University (Publisher)
Created2013