Matching Items (141)
131645-Thumbnail Image.png
Description
This thesis is part of a larger research project, conducted by Elizabeth Stallings Young, which aims to improve understanding about the factors controlling the process of MIDP and the interaction between the biochemical reactions and the hydrological properties of soils treated with MIDP. Microbially Induced Desaturation and Precipitation (MIDP) is

This thesis is part of a larger research project, conducted by Elizabeth Stallings Young, which aims to improve understanding about the factors controlling the process of MIDP and the interaction between the biochemical reactions and the hydrological properties of soils treated with MIDP. Microbially Induced Desaturation and Precipitation (MIDP) is a bio-geotechnical process by which biogenic gas production and calcite mineral bio-cementation are induced in the pore space between the soil particles, which can mitigate earthquake induced liquefaction (Kavazanjian et al. 2015). In this process substrates are injected which stimulate indigenous nitrate reducing bacteria to produce nitrogen and carbon dioxide gas, while precipitating calcium carbonate minerals. The biogenic gas production has been shown to dampen pore pressure build up under dynamic loading conditions and significantly increase liquefaction resistance (Okamura and Soga 2006), while the precipitation of calcium carbonate minerals cements adjacent granular particles together. The objective of this thesis was to analyze the recorded pore pressure development as a result of biogenic gas formation and migration, over the entire two-dimensional flow field, by generating dynamic pressure contour plots, using MATLAB and ImageJ software. The experiment was run in a mesoscale tank that was approximately 114 cm tall, 114 cm wide and 5.25 cm thick. Substrate was flushed through the soil body and the denitrifying reaction occurred, producing gas and correspondingly, pressure. The pressure across the tank was recorded with pore pressure sensors and was loaded into a datalogger. This time sensitive data file was loaded into a MATLAB script, MIDPCountourGen.m, to create pressure contours for the tank. The results from this thesis include the creation of MIDPContourGen.m and a corresponding How-To Guide and pore pressure contours for the F60 tank. This thesis concluded that the MIDP reaction takes a relatively short amount of time and that the residual pressure in the tank after the water flush on day 17 offers a proof of effect of the MIDP reaction.
ContributorsCoppinger, Kristina Marie (Author) / van Paassen, Leon (Thesis director) / Kavazanjian, Edward (Committee member) / Stallings-Young, Elizabeth (Committee member) / Civil, Environmental and Sustainable Eng Program (Contributor) / School of Sustainability (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
Description
This honors project combines the capstone component of CEE: 486 Integrated Civil Engineering Design and the Barrett, The Honors College requirement by combination of Due Diligence report and Street Improvements and Quantities, respectively.

Overall, this project report provides due diligence for a proposed development project, Bella Vida Estates, designed by

This honors project combines the capstone component of CEE: 486 Integrated Civil Engineering Design and the Barrett, The Honors College requirement by combination of Due Diligence report and Street Improvements and Quantities, respectively.

Overall, this project report provides due diligence for a proposed development project, Bella Vida Estates, designed by Red Rock Engineering. This proposed project is located in the southwest portion of the City of Phoenix, in the Laveen Village community.

Bella Vida Estates is a proposed 560-acre mixed-use development whose composition includes single family residential, commercial, recreational park and greenspace, a preparatory charter school, and water storage and wastewater treatment facilities. The subject property is confined east of the new Loop 202 – South Mountain Freeway Extension, south of W. Dobbins Road, north of W. Elliot Road, and west of S. 51st Avenue.

The Due Diligence report is comprised of relevant information needed to develop these parcels of land, including a Property Overview, Land Development Plan, Development Considerations, Sustainability and Value Add components, and Costs.

To provide a more comprehensive due diligence package for the proposed project, street improvement quantities were estimated and then presented via a Construction Documents Exhibit and an Opinion of Probable Costs document.

The Construction Documents Exhibit was created according to City of Phoenix Standards using AutoCAD Civil 3D. The exhibit includes four sheets: Cover Sheet, Exhibit Sheet, Cross Sections, and Appendix. The purpose of this exhibit is to provide a visual representation of the streets to be improved upon, with proper hatching (based on type of cross section), dimensioning, and annotations to aid in presentation.

The Opinion of Probable Costs tabulates Onsite Development costs, which includes Paving, utilities in the form of Water, Sewer, and Storm, Earthwork/Grading, and Lump Sum costs. In addition to the onsite costs, Contingency, General Conditions, General Contractor Fee, and Taxes are included to provide a comprehensive overview of estimated costs.

Red Rock Engineering is excited to propose this promising, sustainable development as a place of residence, commerce, and recreation to the residents of the Laveen Village community.
ContributorsGrgantov, William (Author) / Fox, Peter (Thesis director) / Farrell, Trey (Committee member) / Civil, Environmental and Sustainable Eng Program (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
131616-Thumbnail Image.png
Description
Agriculture is the second largest water consumer in the Phoenix Metropolitan region, after the municipal sector. A significant portion of the cultivated land and agricultural water demand is from the production of animal feed, including alfalfa (~69% of total cropland area), corn (~8), and sorghum (-3%), which are both exported

Agriculture is the second largest water consumer in the Phoenix Metropolitan region, after the municipal sector. A significant portion of the cultivated land and agricultural water demand is from the production of animal feed, including alfalfa (~69% of total cropland area), corn (~8), and sorghum (-3%), which are both exported and needed to support local dairy industry. The goal of this thesis is to evaluate the impacts on water demand and crop production of four different crop portfolios using alfalfa, corn, sorghum, and feed barley. For this aim, the Water Evaluation And Planning (WEAP) platform and the embedded MABIA agronomic module are applied to the Phoenix Active Management Area (AMA), a political/hydrological region including most of Phoenix Metro. The simulations indicate that the most efficient solution is a portfolio where all study crop production is made up by sorghum, with an increase of 153% in crop yield and a reduction of 60% of water consumption compared to current conditions. In contrast, a portfolio where all study crop production is made up by alfalfa, which is primary crop grown in current conditions, decreased crop yield by 77% and increases water demand by 105%. Solutions where all study crop production is achieved with corn or feed barley lead to a reduction of 77% and 65% of each respective water demand, with a portfolio of all corn for study crop production increasing crop yield by 245% and a portfolio of all feed barley for study crop production reducing crop yield by 29%.
ContributorsRees, Kendall Marcella (Author) / Mascaro, Giuseppe (Thesis director) / Muenich, Rebecca (Committee member) / Chhetri, Netra (Committee member) / Civil, Environmental and Sustainable Eng Program (Contributor) / School of International Letters and Cultures (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
Description
This Barrett creative project includes the structural design of a coffee shop using recycled shipping containers in Phoenix, Arizona. Repurposing old shipping containers into commercial and residential buildings has become more popular. Even here in Arizona, buildings have already integrated shipping containers into their design. Shipping containers add a unique

This Barrett creative project includes the structural design of a coffee shop using recycled shipping containers in Phoenix, Arizona. Repurposing old shipping containers into commercial and residential buildings has become more popular. Even here in Arizona, buildings have already integrated shipping containers into their design. Shipping containers add a unique character to the architectural design of the building and at the same time cut costs of construction due to their low prices. With using the shipping containers as building materials, there is a positive impact on the use of the structures in builds. The uniqueness of using shipping containers is what sparked my interest to design a shipping container coffee shop. For my creative project, I designed the coffee shop using the already structurally sound core of the shipping container to my advantage. However, when adding modifications to the structure, the materials of the structure were analyzed to ensure the design could take the modifications. I have taken my love for structural design, the environment, and coffee and brought it to life. Through this project, I have a better understanding of how much thought goes into designing a building and have a deeper understanding of the codes that structural engineers must follow to design and analyze buildings.
ContributorsWhite, Celine Johanna (Author) / Ward, Kristen (Thesis director) / Chatziefstratiou, Efthalia (Committee member) / Civil, Environmental and Sustainable Eng Program (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
130983-Thumbnail Image.png
DescriptionIn this creative project, a treehouse is designed for a cottonwood tree in Dolores, Colorado. The treehouse design was rooted in engineering principles, and brought to life with using the commercial civil engineering program Risa-3D.
ContributorsOlder, Hunter Donovan (Author) / Ward, Kristen (Thesis director) / Hjelmstad, Keith (Committee member) / Civil, Environmental and Sustainable Eng Program (Contributor) / Barrett, The Honors College (Contributor)
Created2020-12
131519-Thumbnail Image.png
Description
As a student and then an Undergraduate Teaching Assistant (UGTA), I have had the opportunity to personally witness the learning process of both myself and approximately 75 additional incoming Civil Engineering students taking the Mechanics courses after me. While watching the student learning process as an UGTA, I realized that

As a student and then an Undergraduate Teaching Assistant (UGTA), I have had the opportunity to personally witness the learning process of both myself and approximately 75 additional incoming Civil Engineering students taking the Mechanics courses after me. While watching the student learning process as an UGTA, I realized that there were consistent points of confusion amongst the students that the teaching staff could not efficiently communicate with the electronic or physical classroom materials available. As a physical learner, I am able to learn more comprehensively if I have a physical model to manipulate, and often found myself in the position of wanting to be able to physically represent and manipulate the systems being studied in class.
ContributorsCamillucci, Allyson Nicole (Co-author, Co-author) / Hjelmstad, Keith (Thesis director) / Chatziefstratiou, Efthalia (Committee member) / Civil, Environmental and Sustainable Eng Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
131665-Thumbnail Image.png
Description
Gathering the necessary information required to tackle traffic congestion problems is generally time consuming and challenging but is an important part of city planners’ work. The purpose of this paper is to describe the methodology used when analyzing potential solutions for the Arizona State Route 89A and Highway 179 roundabout

Gathering the necessary information required to tackle traffic congestion problems is generally time consuming and challenging but is an important part of city planners’ work. The purpose of this paper is to describe the methodology used when analyzing potential solutions for the Arizona State Route 89A and Highway 179 roundabout in Sedona, Arizona; which is currently experiencing significant congestion. The oversaturated condition is typically applied to signalized intersections but its application to roundabouts requires further exploration for future management of similar transportation systems. The accompanying Quick Estimation and Simulation model (QESM) spreadsheet was calibrated using an iterative process to optimize its level of adaptability to various scenarios. This microsimulation modeling program can be used to predict the outcome of possible roadway improvements aimed at decreasing traffic congestion. The information provided in this paper helps users understand traffic system problems, as a primary to visual simulation programs.
ContributorsBrunetti, Isabel (Co-author) / Tran, Adam (Co-author) / Zhou, Xuesong (Thesis director) / Carreon, Adam (Committee member) / Civil, Environmental and Sustainable Eng Program (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
132675-Thumbnail Image.png
Description
The objective of this research paper is to analyze and determine the relationships between childhood and adulthood transit behavior. The study investigates gender differences for each generation regarding childhood transit experiences. Childhood travel socialization was studied to understand its effects on childhood transit experience and perception. Lastly, childhood transit experience

The objective of this research paper is to analyze and determine the relationships between childhood and adulthood transit behavior. The study investigates gender differences for each generation regarding childhood transit experiences. Childhood travel socialization was studied to understand its effects on childhood transit experience and perception. Lastly, childhood transit experience and perception were analyzed to determine their effect on adult transit usage. The variables the study analyzed were childhood peer impression of public transit, parental opinion of the safety of public transit, and the respondents’ childhood public transit experience. These variables were investigated to determine if they had an effect on adult use of public transit. The survey Transit Center’s Who’s On Board: 2014 Mobility Attitudes Survey (WOBMAS) was used to perform these analyses. The results showed that gender equality appears to be increasing in younger generations with respect to their ability to travel alone on public transit. In addition, men were more likely to travel by themselves on public transit when compared to women. There is a direct correlation between childhood travel socialization and childhood transit experience and opinion. However, there appears to be no correlation between childhood travel socialization and a child’s likeliness to travel on public transit alone. Childhood travel socialization had a counterintuitive effect on adult transit usage. On the contrary, it appears that childhood experience is significantly linked to adult transit usage. The data suggests that the earlier a person travels on public transit alone, the more likely they are to ride it as an adult.
ContributorsCharles, Allison (Author) / Pendyala, Ram (Thesis director) / Thompson, Marilyn (Committee member) / Civil, Environmental and Sustainable Eng Program (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
132603-Thumbnail Image.png
Description
In June of 2016, the United Kingdom held a referendum for its citizens to decide whether to remain a part of the European Union or take their leave. The vote was close but ultimately the U.K. decided to leave, triggering the two-year process of negotiations that would shape the U.K.’s

In June of 2016, the United Kingdom held a referendum for its citizens to decide whether to remain a part of the European Union or take their leave. The vote was close but ultimately the U.K. decided to leave, triggering the two-year process of negotiations that would shape the U.K.’s departure (Brexit). The question of what will become of the border between Northern Ireland and the Republic of Ireland is heavy with implications for the national identity of people living on either side of the border, and this makes it one of the more pressing concerns in Brexit discourse. This research analyzes how national identity is used as a rhetorical tactic in media to influence and persuade readers to vote in accordance with the author’s political goals. It does so by evaluating how borders shape national identity and analyzing newspaper articles from the two highest circulating Northern Irish daily newspapers (The Irish News and the Belfast Telegraph) during the week leading up to the June 23rd, 2016 referendum. In analyzing news articles relating to the Irish border issue of Brexit from The Irish News and the Belfast Telegraph during the time frame of June 16th-23rd, 2016, four analytical categories of how identity-related rhetoric was used were discovered: fear, self-interest, Irish Nationalism, and a negative association of the past. Further, it was hypothesized and confirmed the political leanings of the papers influenced which type of rhetorical tactic was used. In the broad realm of Brexit and media related discussion, this research could help strengthen understanding of how traditional media uses national identity to persuade readers to and influence voting behavior in the midst of such a divisive referendum.

Key Words: Brexit, Irish border, national identity, rhetoric, newspapers
ContributorsCaldwell, Tara (Author) / O'Flaherty, Katherine (Thesis director) / Ripley, Charles (Committee member) / School of Social Transformation (Contributor) / School of Politics and Global Studies (Contributor, Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
133109-Thumbnail Image.png
Description
Expansive soils in the United States cause extensive damage to roadways, buildings, and various structures. There are several treatment or methods of mitigation for these expansive soils. These treatments can be physical or chemical treatments that serve to provide more suitable building qualities for foundations and roadways alike. The main

Expansive soils in the United States cause extensive damage to roadways, buildings, and various structures. There are several treatment or methods of mitigation for these expansive soils. These treatments can be physical or chemical treatments that serve to provide more suitable building qualities for foundations and roadways alike. The main issue with expansive soils, is the volumetric variations, which are known as swelling and consolidation. These behaviors of the soil are usually stabilized through the use of lime solution, Portland Cement Concrete, and a newer technology in chemical treatments, sodium silicate solutions. Although the various chemical treatments show benefits in certain areas, the most beneficial method for stabilization comes from the combination of the chemical treatments. Lime and Portland cement concrete are the most effective in terms of increasing compressive strength and reduction of swell potential. However, with the introduction of silicate into either treatment, the efficacy of the treatments increases by a large amount lending itself more as an additive for the former processes. Sodium silicate solution does not lend itself to effectively increase the compressive strength of expansive soils. The sodium silicate solution treatment needs extensive research and development to further improve the process. A proposed experiment plan has been recommended to develop trends of pH and temperature and its influence on the effectiveness of the treatment. Nonetheless, due to the high energy consumption of the other processes, sodium silicate solution may be a proper step in decreases the carbon footprint, that is currently being created by the synthesis of Portland Cement Concrete and lime.
ContributorsMeza, Magdaleno (Author) / Zapata, Claudia (Thesis director) / Kavazanjian, Edward (Committee member) / Civil, Environmental and Sustainable Eng Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2018-12