Matching Items (53)
148043-Thumbnail Image.png
Description

Automated vehicles are becoming more prevalent in the modern world. Using platoons of automated vehicles can have numerous benefits including increasing the safety of drivers as well as streamlining roadway operations. How individual automated vehicles within a platoon react to each other is essential to creating an efficient method of

Automated vehicles are becoming more prevalent in the modern world. Using platoons of automated vehicles can have numerous benefits including increasing the safety of drivers as well as streamlining roadway operations. How individual automated vehicles within a platoon react to each other is essential to creating an efficient method of travel. This paper looks at two individual vehicles forming a platoon and tracks the time headway between the two. Several speed profiles are explored for the following vehicle including a triangular and trapezoidal speed profile. It is discovered that a safety violation occurs during platoon formation where the desired time headway between the vehicles is violated. The aim of this research is to explore if this violation can be eliminated or reduced through utilization of different speed profiles.

ContributorsLarson, Kurt Gregory (Author) / Lou, Yingyan (Thesis director) / Chen, Yan (Committee member) / Civil, Environmental and Sustainable Eng Program (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
Description

Soiled: An Environmental Podcast is a six episode series that addresses common environmental topics and debunks myths that surround those topics.

ContributorsTurner, Natalie Ann (Co-author) / Kuta, Tiffany (Co-author) / Jones, Cassity (Co-author) / Boyer, Mackenzie (Thesis director) / Ward, Kristen (Committee member) / Materials Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
148005-Thumbnail Image.png
Description

Enzyme-induced carbonate precipitation (EICP) is a biocementation technique that produces comparatively fewer carbon dioxide emissions than traditional cementation. However, the use of synthetic reagents for EICP is costly, and the process produces an ammonium byproduct which is a harmful pollutant. This study utilizes fresh urine as a source of urea

Enzyme-induced carbonate precipitation (EICP) is a biocementation technique that produces comparatively fewer carbon dioxide emissions than traditional cementation. However, the use of synthetic reagents for EICP is costly, and the process produces an ammonium byproduct which is a harmful pollutant. This study utilizes fresh urine as a source of urea and calcium-rich zeolites as an ammonium adsorbent and a source of calcium ions for the EICP cementation technique. Batch hydrolysis and adsorption experiments were conducted to determine the effects of zeolite type, zeolite form, and solution composition on ammonium adsorption and calcium release. Cementation experiments were then conducted to determine the effects of different hydrolysis and adsorption times on ammonium adsorption and calcium carbonate precipitation. The results showed that calcium-rich chabazite could be used as a source of calcium ions and as an effective adsorbent of ammonium for EICP. Additionally, synthetic, fresh urine and real, fresh urine had comparable ammonium adsorption and calcium release trends. Finally, inclusion of a pre-hydrolysis step reduced the ammonium adsorption and calcium release, but longer adsorption times lead to calcium carbonate precipitation outside of the sand column, which is an undesirable outcome for soil biocementation; even with this limitation, the calcium carbonate content of sand columns ranged from 0.48% to 0.92%, which signifies the potential of the proposed process for cementation, given a higher initial concentration of urea.

Created2021-05
148085-Thumbnail Image.png
Description

Is there a mismatch between urban farmers’ perceptions of their farm’s environmental sustainability and its actual environmental impact? Focusing on the use of water and nutrients on each farm as described by the farmers through interviews, it is evident that there is some level of disconnect between ideals and practices.

Is there a mismatch between urban farmers’ perceptions of their farm’s environmental sustainability and its actual environmental impact? Focusing on the use of water and nutrients on each farm as described by the farmers through interviews, it is evident that there is some level of disconnect between ideals and practices. This project may aid in bridging the gap between the two in regard to the farmers’ sustainability goals. This project will move forward by continuing interviews with farmers as well as collecting soil and water from the farms in order to more accurately quantify the sustainability of the farms’ practices. This project demonstrates that there is some degree of misalignment between perception and reality. Two farms claimed they were sustainable when their practices did not reflect that, while 2 farms said they were not sure if they were sustainable when their practices indicated otherwise. Samples from two farms showed high concentrations of nutrients and salts, supporting the idea that there may be a mismatch between perceived and actual sustainability.

ContributorsBonham, Emma Eileen (Author) / Muenich, Rebecca (Thesis director) / Zanin, Alaina (Committee member) / Civil, Environmental and Sustainable Eng Program (Contributor) / School of Sustainability (Contributor) / School of Sustainable Engineering & Built Envirnmt (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
147954-Thumbnail Image.png
Description

This study investigated the difference in biofilm growth between pristine polypropylene microplastics and aged polypropylene microplastics. The microplastics were added to Tempe Town Lake water for 4 weeks. Each week the microplastic biofilms were quantified. Comparing the total biofilm counts, the results showed that the aged microplastic biofilms were larger

This study investigated the difference in biofilm growth between pristine polypropylene microplastics and aged polypropylene microplastics. The microplastics were added to Tempe Town Lake water for 4 weeks. Each week the microplastic biofilms were quantified. Comparing the total biofilm counts, the results showed that the aged microplastic biofilms were larger than the pristine each week. By week 3 the aged microplastic counts had almost doubled in size increasing from 324 to 626 Colony Forming Units per gram in just one week. There was a significant difference in the diversity found from week 1 to week 4. About 40% of the diversity for the pristine microplastic biofilm was seen as light-yellow dots and about 60% of these dots were seen on the aged microplastic biofilms in both weeks. As the microplastics were submerged in the lake water, new phenotypes emerged varying from week 1 to week 4 and from pristine to aged microplastic biofilms. Generally, it was found that as the microplastics stay in the environment there is more biofilm on the particles. The aged microplastics have a larger amount of biofouling, and the pristine microplastic biofilms were found to have more diversity of phenotypes.

Created2021-05
Description

Soiled: An Environmental Podcast is a six episode series where common environmental topics are discussed and misconceptions surrounding these topics are debunked.

ContributorsKuta, Tiffany T (Co-author) / Jones, Cassity (Co-author) / Turner, Natalie (Co-author) / Boyer, Mackenzie (Thesis director) / Ward, Kristen (Committee member) / Civil, Environmental and Sustainable Eng Program (Contributor) / School of Sustainability (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
Description

Soiled: An Environmental Podcast is a six episode series where common environmental topics are discussed and misconceptions surrounding these topics are debunked.

ContributorsJones, Cassity Rachelle (Co-author) / Kuta, Tiffany (Co-author) / Turner, Natalie (Co-author) / Boyer, Mackenzie (Thesis director) / Ward, Kristen (Committee member) / School of Life Sciences (Contributor) / School of Human Evolution & Social Change (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
148468-Thumbnail Image.png
Description

Water heaters that are manufactured for swimming pools come in several forms, most of which require an electrical input for a source of power. Passive-circulation systems, however, require no electrical power input because fluid circulation occurs as a result of thermal gradients. In solar-based systems, thermal gradients are developed by

Water heaters that are manufactured for swimming pools come in several forms, most of which require an electrical input for a source of power. Passive-circulation systems, however, require no electrical power input because fluid circulation occurs as a result of thermal gradients. In solar-based systems, thermal gradients are developed by energy collected from sunlight. The combination of solar collection and passive circulation yields a system in which fluids, particularly water, are heated and circulated without need of assistance from external mechanical or electrical sources. The design of such a system was adapted from that of forced-circulation solar collector systems, as were the equations describing its thermodynamic properties. The design was developed based on such constraints as material corrosion resistance, overall system cost, and location-controlled size limitations. The thermodynamic description of the designed system was adjusted on the basis of the designed system’s physical aspects, such as the configuration and material of each component within the solar collector. Numerical analysis performed with the altered thermodynamic equations projected a total energy gain of 7.39 W between 9:00 and 10:00 A.M. and a total energy gain of 13.12 W between 4:00 and 5:00 P.M. The temperature of heated water exiting the collector system was projected to be 17.62°C in the morning and 25.56°C in the afternoon. The morning projection utilized an initial fluid temperature of 12°C and an ambient air temperature of 13°C, while the afternoon projection utilized an initial fluid temperature of 17°C and an ambient air temperature of 22°C. Field testing of the designed passive thermosyphon solar collector system was performed over a period of about one month with one temperature measurement taken at the collector outlet in the morning and another taken in the afternoon. For an ambient air temperature of 13°C, the linear regression developed from the morning dataset yielded an outlet water temperature of 20°C and that for the afternoon dataset yielded an outlet water temperature of 39°C for an ambient air temperature of 17°C. The percentage error between the projected and measured results was 13.51% for the morning period and 52.58% for the afternoon period. Numerical simulation and field data demonstrated that while the collector system operated successfully, its effects were limited to the volume of water immediately surrounding the outlet of the system; the rate of circulation within the system was too low for there to be a meaningful increase in the temperature of the water body at large. The stated results demonstrate that while the particular configuration of passive circulation solar collection technology developed in this instance is capable of transferring solar thermal energy to water without additional energy sources, significant modifications are necessary in order to improve the effectiveness of the technology. Such changes may come from improvements in material availability or alterations to the configuration of components of the collector system.

ContributorsZimmerman, Julia Elizabeth (Author) / Garcia, Margaret (Thesis director) / Phelan, Patrick (Committee member) / Civil, Environmental and Sustainable Eng Program (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
135622-Thumbnail Image.png
Description
Women have evolved in the engineering profession over the decades. However, there is still a lot more room for female presence in the industry as women currently make up about 12-15% of working engineers. Based on many studies and surveys, it is clear that female confidence in their own performance

Women have evolved in the engineering profession over the decades. However, there is still a lot more room for female presence in the industry as women currently make up about 12-15% of working engineers. Based on many studies and surveys, it is clear that female confidence in their own performance and a feeling of belonging in the industry has evolved for the better. The studies and surveys also show that women still lack a certain confidence to get their engineering degree and then to pursue a career in engineering once they receive their degree. Research shows that the main cause for this is due to the stereotype that engineering is a masculine profession. Men and women both have this mindset because it has become a societal norm that most people go along with and do not even realize it. Unfortunately, it is very hard to overcome and change a societal norm, therefore, something needs to be done in order to fix this mindset. (Crawford). Based on studies and research, there are many ways the stereotype is being combatted. Social media has become a huge component in advocating for female engineers. Men and women are helping to fight the status quo by supporting female engineers and lobbying against people who think women do not belong in the industry. Industry professionals are teaming up with schools to figure out ways to make STEM programs more exciting for all young kids, but especially girls. They are also working to provide more mentors and role models for young girls in order to cheer them on and make them more confident in their abilities when learning and applying the STEM curriculum, as studies have proven that providing young girls with mentors can really help foster more female engineers in the long run. (Crawford). With all of the positive support and promotions of female engineers in the past few years, it is evident that women can certainly progress at a much faster pace than in previous decades.
ContributorsAcosta, Jazlyn (Co-author) / Venne, Hunter (Co-author) / Ward, Kristen (Thesis director) / Lou, Yingyan (Committee member) / Civil, Environmental and Sustainable Engineering Programs (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
132511-Thumbnail Image.png
Description
Approximately 1% of the total working population within the United States bikes as their primary mode of commute. Due to recent increased in bicycle facilities as well as a focus on alternative modes of transport, understanding the motivations and type of people who bike to work is important in order

Approximately 1% of the total working population within the United States bikes as their primary mode of commute. Due to recent increased in bicycle facilities as well as a focus on alternative modes of transport, understanding the motivations and type of people who bike to work is important in order to encourage new users.
In this project, a literature review was completed as well as data analysis of the National Household Travel Survey (NHTS) in order to find specific populations to target. Using these target populations, it is suggested that advertising and workplace encouragement occur to persuade more people to bike to work. Through data analysis it was found that the most impactful variables were the region of the country, gender, population density, and commute distance. Bicycle commuters statistically had fewer vehicles in their households and drove less miles annually.
There were five main target groups found through this analysis; people who bike for other reasons besides work and live in a city with more than 4,000 people per square mile, young professionals between 19-39, women in regions with separated bicycle facilities, those with low vehicle availability, and environmentally conscious individuals. Working to target these groups through advertising campaigns to encourage new users, as well as increasing and improving bicycle facilities, will help create more new bicyclists.
ContributorsImbus, Eileen Elizabeth (Author) / Khoeini, Sara (Thesis director) / Pendyala, Ram (Committee member) / Civil, Environmental and Sustainable Eng Program (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05