Matching Items (219)
130266-Thumbnail Image.png
Description
Diamond is considered as an ideal material for high field and high power devices due to its high breakdown field, high lightly doped carrier mobility, and high thermal conductivity. The modeling and simulation of diamond devices are therefore important to predict the performances of diamond based devices. In this context,

Diamond is considered as an ideal material for high field and high power devices due to its high breakdown field, high lightly doped carrier mobility, and high thermal conductivity. The modeling and simulation of diamond devices are therefore important to predict the performances of diamond based devices. In this context, we use Silvaco[superscript ®] Atlas, a drift-diffusion based commercial software, to model diamond based power devices. The models used in Atlas were modified to account for both variable range and nearest neighbor hopping transport in the impurity bands associated with high activation energies for boron doped and phosphorus doped diamond. The models were fit to experimentally reported resistivity data over a wide range of doping concentrations and temperatures. We compare to recent data on depleted diamond Schottky PIN diodes demonstrating low turn-on voltages and high reverse breakdown voltages, which could be useful for high power rectifying applications due to the low turn-on voltage enabling high forward current densities. Three dimensional simulations of the depleted Schottky PIN diamond devices were performed and the results are verified with experimental data at different operating temperatures.
Created2016-06-08
130269-Thumbnail Image.png
Description
The invention of the laser in the 1950 s for visible light and microwaves, and the slow but steady recognition of its manifold uses, is a truly remarkable story in the history of science. But the severe λ[superscript 3] dependence of the ratio of stimulated (mostly coherent) to spontaneous (incoherent) emission

The invention of the laser in the 1950 s for visible light and microwaves, and the slow but steady recognition of its manifold uses, is a truly remarkable story in the history of science. But the severe λ[superscript 3] dependence of the ratio of stimulated (mostly coherent) to spontaneous (incoherent) emission meant that efforts to build an X-ray laser seemed hopeless for decades. As so often happens in the history of science, the breakthrough eventually occurred at the interface of several fields – synchrotron science (and especially their insertion devices), laser physics, and work on microwave tubes for radar, emerging from the second world war. Synchrotrons themselves were an outgrowth of the particle accelerators of nuclear physics, whose X-ray radiation was considered a nuisance. All of this culminated recently in the construction of the first hard-X-ray laser, the US Department of Energy's Linac Coherent Light Source (LCLS), at their SLAC laboratory near Stanford. The first X-ray lasing occurred in that two-mile long tunnel on April 21, 2009, at about 2 kV, in an all-or-nothing moment of intense excitement, as theoretical predictions proved spot-on. The new laser principle needed for hard-X-ray lasing, the free-electron laser (FEL), was first demonstrated in the infra-red region at Stanford in 1975 in John Madey's group, following earlier theoretical work by Motz and Phillips on microwave tubes. Other FELs soon followed, in the microwave and visible region, leading to the LCLS. The XFEL method provides brief pulses of X-ray laser radiation by the SASE (self-amplified spontaneous emission) process, using a resonant undulator driven by a LINAC electron accelerator. Each LCLS pulse, of 10 fs duration (repeated 120 times a second) contains about 10[superscript 12] hard-X-ray photons, about the same number that a synchrotron might generate in a second.
ContributorsSpence, John (Author) / College of Liberal Arts and Sciences (Contributor) / Department of Physics (Contributor)
Created2014-04-30
130270-Thumbnail Image.png
Description
X-ray diffraction patterns from two-dimensional (2-D) protein crystals obtained using femtosecond X-ray pulses from an X-ray free-electron laser (XFEL) are presented. To date, it has not been possible to acquire transmission X-ray diffraction patterns from individual 2-D protein crystals due to radiation damage. However, the intense and ultrafast pulses generated

X-ray diffraction patterns from two-dimensional (2-D) protein crystals obtained using femtosecond X-ray pulses from an X-ray free-electron laser (XFEL) are presented. To date, it has not been possible to acquire transmission X-ray diffraction patterns from individual 2-D protein crystals due to radiation damage. However, the intense and ultrafast pulses generated by an XFEL permit a new method of collecting diffraction data before the sample is destroyed. Utilizing a diffract-before-destroy approach at the Linac Coherent Light Source, Bragg diffraction was acquired to better than 8.5 Å resolution for two different 2-D protein crystal samples each less than 10 nm thick and maintained at room temperature. These proof-of-principle results show promise for structural analysis of both soluble and membrane proteins arranged as 2-D crystals without requiring cryogenic conditions or the formation of three-dimensional crystals.
ContributorsFrank, Matthias (Author) / Carlson, David B. (Author) / Hunter, Mark S. (Author) / Williams, Garth J. (Author) / Messerschmidt, Marc (Author) / Zatsepin, Nadia (Author) / Barty, Anton (Author) / Benner, W. Henry (Author) / Chu, Kaiqin (Author) / Graf, Alexander T. (Author) / Hau-Riege, Stefan P. (Author) / Kirian, Richard A. (Author) / Padeste, Celestino (Author) / Pardini, Tommaso (Author) / Pedrini, Bill (Author) / Segelke, Brent (Author) / Seibert, M. Marvin (Author) / Spence, John (Author) / Tsai, Ching-Ju (Author) / Lane, Stephen M. (Author) / Li, Xiao-Dan (Author) / Schertler, Gebhard (Author) / Boutet, Sebastien (Author) / Coleman, Matthew (Author) / Evans, James E. (Author) / College of Liberal Arts and Sciences (Contributor) / Department of Physics (Contributor)
Created2014-02-28
147602-Thumbnail Image.png
Description

The Micro-g NExT 2019 challenge set out to find a new device to replace the Apollo mission lunar contingency sampler in preparation for the 2024 Artemis mission. The 2019 challenge set a series of requirements that would enable compatibility with the new xEMU suit and enable astronauts to effectively collect

The Micro-g NExT 2019 challenge set out to find a new device to replace the Apollo mission lunar contingency sampler in preparation for the 2024 Artemis mission. The 2019 challenge set a series of requirements that would enable compatibility with the new xEMU suit and enable astronauts to effectively collect and secure an initial sample upon landing. The final prototype developed by the team features a sliding plate design with each plate slightly shorter than the previous. The device utilizes the majority of the xEMU suit’s front pocket volume while still allowing space for the astronaut’s hand and the bag for the sample. Considering safety concerns, the device satisfies NASA’s requirements for manual handheld devices and poses no threat to the astronaut under standard operation. In operation, the final design experiences an acceptable level stress in the primary use direction, and an even less in the lateral direction. Using assumptions such as the depth and density of lunar soil to be sampled, the working factor of safety is about 2 for elastic deformation, but the tool can still be operated and even collapsed at roughly double that stress. Unfortunately, the scope of this thesis only covers the effectiveness of resin prototypes and simulations of aluminum models, but properly manufactured aluminum prototypes are the next step for validating this design as a successor to the design used on the Apollo missions.

ContributorsKung, Tyler H (Co-author) / Price, Chance (Co-author) / Tinsley, Carly (Co-author) / Barduson, Lucas (Co-author) / Grewal, Anoop (Thesis director) / Wells, Valana (Committee member) / Mechanical and Aerospace Engineering Program (Contributor) / Department of Physics (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
147874-Thumbnail Image.png
Description

This paper outlines the design and testing of a z-scan spectrometer capable of measuring the third order refraction index of liquids. The spectrometer underwent multiple redesigns, with each explored in this paper with their benefits and drawbacks discussed. The first design was capable of measuring the third order

This paper outlines the design and testing of a z-scan spectrometer capable of measuring the third order refraction index of liquids. The spectrometer underwent multiple redesigns, with each explored in this paper with their benefits and drawbacks discussed. The first design was capable of measuring the third order refraction index for glass, and found a value of 8.43 +- 0.392 x 10^(-16) cm^2/W for the glass sample, with the literature stating glass has a refraction index between 1-100 x 10^(-16) cm^2/W. The second design was capable of measuring the third order refraction index of liquids, and found values of 1.23 $\pm$ 0.121 $\e{-16}$ and 9.43 +- 1.00 x 10^(-17) cm^2/W for water and ethanol respectively, with literature values of 2.7 x 10^(-16) and 5.0 x 10^(-17) cm^2/W respectively. The third design gave inconclusive results due to extreme variability in testing, and and the fourth design outlined has not been tested yet due to time constraints.

ContributorsClark, Brian Vincent (Author) / Sayres, Scott (Thesis director) / Steimle, Timothy (Committee member) / Keeler, Cynthia (Committee member) / School of Molecular Sciences (Contributor) / Department of Physics (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
148011-Thumbnail Image.png
Description

Debris disks are a collection of dust grains and planetesimals around a star and are thought to contain the remnants of planet formation. Directly imaging debris disks and studying their morphologies is valuable for studying the planet formation process. In some stellar systems that have a directly imaged debris disk,

Debris disks are a collection of dust grains and planetesimals around a star and are thought to contain the remnants of planet formation. Directly imaging debris disks and studying their morphologies is valuable for studying the planet formation process. In some stellar systems that have a directly imaged debris disk, there are also directly imaged planets. Debris disk structures like gaps and asymmetries can show the gravitational e↵ects of planets that are below the brightness threshold for being detected via direct imaging. We investigate a sample of debris disks in Scorpius-Centaurus (Sco-Cen) that were imaged with the Gemini Planet Imager (GPI), which is an adaptive optics system with a coronagraph to block starlight. We look at two GPI data sets, the GPIES campaign Sco-Cen targets, and a follow-up observing program for Sco-Cen targets. We resolve 5 debris disks in the follow-up program and 13 from the GPIES campaign. By calculating contrast curves, we determine the planet detection limit in each of the GPI images. We find that we could have detected 5 Jupiter mass planets at angular separations greater than about 0.6 arcseconds in our GPIES campaign images. In three of our images we could have detected 2 Jupiter mass planets in wide orbits, but 2 Jupiter masses below the detection limit in our other images. We identify one point source around HD 108904 as a sub-stellar companion candidate. To further check for evidence of planets that are below the detection limit, we measure the surface brightness profile of the disks to check for asymmetries in brightness. We find that one of the edge-on disks has an asymmetric surface brightness profile, HD 106906, and three other edge-on disks have symmetric surface brightness profiles. We also find that two disks, HD 106906 and HD 111520, are asymmetric in radial extent, which is possibly evidence for gravitational interactions with planets.

ContributorsWorthen, Kadin Douglas (Author) / Patience, Jennifer (Thesis director) / Hom, Justin (Committee member) / Department of Physics (Contributor) / School of Earth and Space Exploration (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
135914-Thumbnail Image.png
Description
In this paper, I first explain the legal theory which leads up to Obergefell v. Hodges, and then analyze Obergefell v. Hodges itself. My analysis leads me to conclude that the legal reasoning, or the argument used to come to the decision, is flawed for it relies too heavily upon

In this paper, I first explain the legal theory which leads up to Obergefell v. Hodges, and then analyze Obergefell v. Hodges itself. My analysis leads me to conclude that the legal reasoning, or the argument used to come to the decision, is flawed for it relies too heavily upon public opinion and is a legislative action of the Supreme Court. Therefore, I offer three alternatives: each of which improve upon the legal reasoning in different ways. Furthermore, my analysis of these three arguments\u2014and particularly the Free Exercise Argument\u2014leads me to postulate that there is in fact a Freedom to Practice embedded in the penumbral, or unstated, rights of the United States Constitution. While the full extent of the implications of such a right must be explored in another paper, I establish the legal reasoning for the freedom by four routes, showing that although precedent has yet to materialize, there are several arguments for the freedom.
ContributorsMartin, Daniel Brockie (Author) / Kramer, Zachary (Thesis director) / Graff, Sarah (Committee member) / Department of Physics (Contributor) / Barrett, The Honors College (Contributor)
Created2015-12
136216-Thumbnail Image.png
Description
In this paper, optimal control routines are applied to an existing problem of electron state transfer to determine if spin information can successfully be moved across a chain of donor atoms in silicon. The additional spin degrees of freedom are introduced into the formulation of the problem as well as

In this paper, optimal control routines are applied to an existing problem of electron state transfer to determine if spin information can successfully be moved across a chain of donor atoms in silicon. The additional spin degrees of freedom are introduced into the formulation of the problem as well as the control optimization algorithm. We find a timescale of transfer for spin quantum information across the chain fitting with a t > π/A and t > 2π/A transfer pulse time corresponding with rotation of states on the electron Bloch sphere where A is the electron-nuclear coupling constant. Introduction of a magnetic field weakens transfer
efficiencies at high field strengths and prohibits anti-aligned nuclear states from transferring. We also develop a rudimentary theoretical model based on simulated results and partially validate the characteristic transfer times for spin states. This model also establishes a framework for future work including the introduction of a magnetic field.
ContributorsMorgan, Eric Robert (Author) / Treacy, Michael (Thesis director) / Whaley, K. Birgitta (Committee member) / Greenman, Loren (Committee member) / Barrett, The Honors College (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / Department of Physics (Contributor)
Created2015-05
132440-Thumbnail Image.png
Description
In this experiment an Electrodynamic Ion Ring Trap was constructed and tested. Due to the nature of Electrostatic fields, the setup required an oscillating voltage source to stably trap the particles. It was built in a safe manner, The power supply was kept in a project box to avoid incidental

In this experiment an Electrodynamic Ion Ring Trap was constructed and tested. Due to the nature of Electrostatic fields, the setup required an oscillating voltage source to stably trap the particles. It was built in a safe manner, The power supply was kept in a project box to avoid incidental contact, and was connected to a small copper wire in the shape of a ring. The maximum voltage that could be experienced via incidental contact was well within safe ranges a 0.3mA. Within minutes of its completion the trap was able to trap small Lycopodium powder spores mass of approximately 1.7*10^{-11}kg in clusters of 15-30 for long timescales. The oscillations of these spores were observed to be roughly 1.01mm at their maximum, and in an attempt to understand the dynamics of the Ion Trap, a concept called the pseudo-potential of the trap was used. This method proved fairly inaccurate, involving much estimation and using a static field estimation of 9.39*10^8 N\C and a charge estimate on the particles of ~1e, a maximum oscillation distance of 1.37m was calculated. Though the derived static field strength was not far off from the field strength required to achieve the correct oscillation distance (Percent error of 9.92%, the small discrepancy caused major calculation errors. The trap's intended purpose however was to eventually trap protein molecules for mapping via XFEL laser, and after its successful construction that goal is fairly achievable. The trap was also housed in a vacuum chamber so that it could be more effectively implemented with the XFEL.
ContributorsNicely, Ryan Joseph (Author) / Kirian, Richard (Thesis director) / Weiterstall, Uwe (Committee member) / School of Mathematical and Statistical Sciences (Contributor) / Department of Physics (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05