Matching Items (27)
137189-Thumbnail Image.png
Description
Urban areas produce an urban heat island (UHI), which is manifest as warmer temperatures compared to the surrounding and less developed areas. While it is understood that UHI's are warmer than their surrounding areas, attributing the amount of heat added by the urban area is not easily determined. Current generation

Urban areas produce an urban heat island (UHI), which is manifest as warmer temperatures compared to the surrounding and less developed areas. While it is understood that UHI's are warmer than their surrounding areas, attributing the amount of heat added by the urban area is not easily determined. Current generation modeling systems require diurnal anthropogenic heating profiles. Development of diurnal cycle profiles of anthropogenic heating will help the modeling community as there is currently no database for anthropogenic heating profiles for cities across the United States. With more accurate anthropogenic heating profiles, climate models will be better able to show how humans directly impact the urban climate. This research attempts to create anthropogenic heating profiles for 61 cities in the United States. The method used climate, electricity, natural gas, and transportation data to develop anthropogenic heating profiles for each state. To develop anthropogenic heating profiles, profiles are developed for buildings, transportation, and human metabolism using the most recently available data. Since utilities are reluctant to release data, the building energy profile is developed using statewide electricity by creating a linear regression between the climate and electricity usage. A similar method is used to determine the contribution of natural gas consumption. These profiles are developed for each month of the year, so annual changes in anthropogenic heating can be seen. These profiles can then be put into climate models to enable more accurate urban climate modeling.
ContributorsMilne, Jeffrey (Author) / Georgescu, Matei (Thesis director) / Sailor, David (Committee member) / Brazel, Anthony (Committee member) / Barrett, The Honors College (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / School of Geographical Sciences and Urban Planning (Contributor)
Created2014-05
141386-Thumbnail Image.png
Description

The urban thermal environment varies not only from its rural surroundings but also within the urban area due to intra-urban differences in land-use and surface characteristics. Understanding the causes of this intra-urban variability is a first step in improving urban planning and development. Toward this end, a method for quantifying

The urban thermal environment varies not only from its rural surroundings but also within the urban area due to intra-urban differences in land-use and surface characteristics. Understanding the causes of this intra-urban variability is a first step in improving urban planning and development. Toward this end, a method for quantifying causes of spatial variability in the urban heat island has been developed. This paper presents the method as applied to a specific test case of Portland, Oregon. Vehicle temperature traverses were used to determine spatial differences in summertime ~2 m air temperature across the metropolitan area in the afternoon. A tree-structured regression model was used to quantify the land-use and surface characteristics that have the greatest influence on daytime UHI intensity. The most important urban characteristic separating warmer from cooler regions of the Portland metropolitan area was canopy cover. Roadway area density was also an important determinant of local UHI magnitudes. Specifically, the air above major arterial roads was found to be warmer on weekdays than weekends, possibly due to increased anthropogenic activity from the vehicle sector on weekdays. In general, warmer regions of the city were associated with industrial and commercial land-use. The downtown core, whilst warmer than the rural surroundings, was not the warmest part of the Portland metropolitan area. This is thought to be due in large part to local shading effects in the urban canyons.

ContributorsHart, Melissa A. (Author) / Sailor, David (Author)
Created2008-05-07
141408-Thumbnail Image.png
Description

Creating a Healthier, More Livable and Prosperous Phoenix

Phoenix is poised to become the next great American City. The Tree and Shade Master Plan presents Phoenix’s leaders and residents a roadmap to creating a 21st Century desert city. The urban forest is a keystone to creating a sustainable city because it

Creating a Healthier, More Livable and Prosperous Phoenix

Phoenix is poised to become the next great American City. The Tree and Shade Master Plan presents Phoenix’s leaders and residents a roadmap to creating a 21st Century desert city. The urban forest is a keystone to creating a sustainable city because it solves many problems with one single solution. By investing in trees and the urban forest, the city can reduce its carbon footprint, decrease energy costs, reduce storm water runoff, increase biodiversity, address the urban heat island effect, clean the air, and increase property values. In addition, trees can help to create walkable streets and vibrant pedestrian places. More trees will not solve all the problems, but it is known that for every dollar invested in the urban forest results in an impressive return of $2.23 in benefits.

Phoenix has a strong foundation on which to build the future. Phoenix residents value natural resources and have voted repeatedly to invest in the living infrastructure. For instance, the Phoenix Parks and Preserve Initiative was passed twice with over 75 percent voter approval. This modest sales tax has purchased land for the Sonoran Preserve, funded habitat restoration efforts along Rio Salado, built new parks and planted hundreds of new trees. These projects and others like it provide the base for a healthy urban forest. Trees and engineered shade have the potential to be one of the city’s greatest assets and the Tree and Shade Master Plan provides the framework for creating a healthier, more livable and prosperous Phoenix.

The Urban Forest – Trees for People

The urban forest is a critical component of the living infrastructure. It benefits and attracts residents and tourists alike to live, work, shop and play in the city. Phoenix’s urban forest is a diverse ecosystem of soils, vegetation, trees, associated organisms, air, water, wildlife and people. The urban forest is found not only in parks, mountain preserves and native desert areas, but also in neighborhoods, commercial corridors, industrial parks and along streets. The urban forest is made up of a rich mosaic of private and public property that surrounds the city and provides many environmental, economic, and social benefits.

In order for the urban forest to be a profitable investment, Phoenix must do more than just plant trees. The entire lifecycle of the tree must be addressed because the current planting, maintenance, and irrigation practices are preventing many trees from providing their maximum return on investment. The Tree and Shade Master Plan provides a detailed roadmap to address these issues, as well as many others, with realistic and incremental steps. To succeed, this plan requires a long-term investment from the residents and leaders of Phoenix.

Trees are Solution Multipliers

Solution multipliers solve numerous problems simultaneously. Trees are a perfect example of a solution multiplier because when planted and maintained correctly, they can provide many economic, environmental, and social benefits. According to the US Forest Service, trees benefit the community by: providing a cooling effect that reduces energy costs; improving air quality; strengthening quality of place and the local economy; reducing storm water runoff; improving social connections; promoting smart growth and compact development; and creating walkable communities (US Forest Service and Urban & Community Forestry). Trees are high-yield assets; for example, the City of Chicago values its trees at $2.3 billion dollars. Trees have a documented return on investment (ROI) in Arizona of $2.23 for every $1 invested (US Department of Agriculture Forest Service). This demonstrates the important role that trees have within the city's economy. This is why it is critical to manage and invest in the urban forest; the health of the urban forest is closely linked to the economic health of the city.

Maintainable Infrastructure

Phoenix is a desert city that has a history of several decades of drought. In order to achieve a healthy urban forest we must use water wisely. Currently, 60 percent of Phoenix’s water is used outdoors, mainly for landscape irrigation. According to the City of Phoenix’s Water Services Department, Phoenix has an adequate sustainable water supply to meet the State of Arizona’s 100-year assured water supply standard. This includes growth in Phoenix’s system water demand over the next 20 years or more. Nonetheless, to achieve a maintainable urban forest, water must be used more efficiently. This is done with high-efficiency irrigation systems, use of drought-tolerant plant material, strategic placement of shade corridors and continued education. In order for a healthy urban forest to exist, it must be coupled with strong water management.

Implementation

The Urban Forest Infrastructure Team and the Parks and Recreation Department are charged with coordinating and maintaining the Tree and Shade Master Plan. Many City departments will implement the plan as they work to fulfill their own missions. The Tree and Shade Master Plan will not only provide a framework to achieve an average 25 percent tree canopy coverage by 2030 but will also help to achieve many goals and policies from the Green Phoenix Initiative and the voter ratified General Plan.

The plan proposes incremental steps to achieve the 2030 vision and canopy goal. The City of Phoenix is beginning to put a process in place to preserve, maintain, and redevelop the urban forest. This plan intends to increase the quality of life and economic vitality of the city by recommending ways to create a sustainable urban forest for future generations.

ContributorsCity of Phoenix (Contributor)
Created2010
141418-Thumbnail Image.png
Description

Presentation by David Sailor, professor in the School of Geographical Sciences and Urban Planning and director of the Urban Climate Research Center at ASU. Sailer's presentation addresses how to define urban heat islands (UHI), and decisions about why and how to measure these complex ecosystems.

ContributorsSailor, David (Author)
Created2017-09-07
147519-Thumbnail Image.png
Description

Ozone is a highly reactive compound that is harmful at very low concentrations as compared to other pollutants. One method of pollution control is the use of photocatalysis, specifically with titanium dioxide to induce ozone decomposition. An experiment was designed and executed in order to determine the rate of decomposition

Ozone is a highly reactive compound that is harmful at very low concentrations as compared to other pollutants. One method of pollution control is the use of photocatalysis, specifically with titanium dioxide to induce ozone decomposition. An experiment was designed and executed in order to determine the rate of decomposition by coating concrete in 5% by weight titanium dioxide mixed with paint. The experiment was unsuccessful in inducing decomposition but gave important insight into the adsorptive properties of ozone over surfaces, particularly with bare concrete that had an adsorption of 22.51 ± 2.457 ppbv, which was much better than the coated samples. Further studies into the development of photocatalytic paint is needed in order to develop an effective urban ozone pollution control method to be implemented in major cities, particularly in the most polluted such as Los Angeles, California.

ContributorsMedina, Taylor (Author) / Andino, Jean (Thesis director) / Sailor, David (Committee member) / Chemical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
141431-Thumbnail Image.png
Description

The relationship between the characteristics of the urban land system and land surface temperature (LST) has received increasing attention in urban heat island and sustainability research, especially for desert cities. This research generally employs medium or coarser spatial resolution data and primarily focuses on the effects of a few classes

The relationship between the characteristics of the urban land system and land surface temperature (LST) has received increasing attention in urban heat island and sustainability research, especially for desert cities. This research generally employs medium or coarser spatial resolution data and primarily focuses on the effects of a few classes of land-cover composition and pattern at the neighborhood or larger level using regression models. This study explores the effects of land system architecture—composition and configuration, both pattern and shape, of fine-grain land-cover classes—on LST of single family residential parcels in the Phoenix, Arizona (southwestern USA) metropolitan area. A 1 m resolution land-cover map is used to calculate land architecture metrics at the parcel level, and 6.8 m resolution MODIS/ASTER data are employed to retrieve LST. Linear mixed-effects models quantify the impacts of land configuration on LST at the parcel scale, controlling for the effects of land composition and neighborhood characteristics. Results indicate that parcel-level land-cover composition has the strongest association with daytime and nighttime LST, but the configuration of this cover, foremost compactness and concentration, also affects LST, with different associations between land architecture and LST at nighttime and daytime. Given information on land system architecture at the parcel level, additional information based on geographic and socioeconomic variables does not improve the generalization capability of the statistical models. The results point the way towards parcel-level land-cover design that helps to mitigate the urban heat island effect for warm desert cities, although tradeoffs with other sustainability indicators must be considered.

ContributorsLi, Xiaoxiao (Author) / Kamarianakis, Yiannis (Author) / Ouyang, Yun (Author) / Turner II, B. L. (Author) / Brazel, Anthony J. (Author)
Created2017-02-14
141433-Thumbnail Image.png
Description

This study seeks to determine the role of land architecture—the composition and configuration of land cover—as well as cadastral/demographic/economic factors on land surface temperature (LST) and the surface urban heat island effect of Phoenix, Arizona. It employs 1 m National Agricultural Imagery Program data of land-cover with 120mLandsat-derived land surface

This study seeks to determine the role of land architecture—the composition and configuration of land cover—as well as cadastral/demographic/economic factors on land surface temperature (LST) and the surface urban heat island effect of Phoenix, Arizona. It employs 1 m National Agricultural Imagery Program data of land-cover with 120mLandsat-derived land surface temperature, decomposed to 30 m, a new measure of configuration, the normalized moment of inertia, and U.S. Census data to address the question for two randomly selected samples comprising 523 and 545 residential neighborhoods (census blocks) in the city. The results indicate that, contrary to most other studies, land configuration has a stronger influence on LST than land composition. In addition, both land configuration and architecture combined with cadastral, demographic, and economic variables, capture a significant amount of explained variance in LST. The results indicate that attention to land architecture in the development of or reshaping of neighborhoods may ameliorate the summer extremes in LST.

ContributorsLi, Xiaoxiao (Author) / Li, Wenwen (Author) / Middel, Ariane (Author) / Harlan, Sharon L. (Author) / Brazel, Anthony J. (Author) / Turner II, B. L. (Author)
Created2015-12-29
141447-Thumbnail Image.png
Description

Preventing heat-associated morbidity and mortality is a public health priority in Maricopa County, Arizona (United States). The objective of this project was to evaluate Maricopa County cooling centers and gain insight into their capacity to provide relief for the public during extreme heat events. During the summer of 2014, 53

Preventing heat-associated morbidity and mortality is a public health priority in Maricopa County, Arizona (United States). The objective of this project was to evaluate Maricopa County cooling centers and gain insight into their capacity to provide relief for the public during extreme heat events. During the summer of 2014, 53 cooling centers were evaluated to assess facility and visitor characteristics. Maricopa County staff collected data by directly observing daily operations and by surveying managers and visitors. The cooling centers in Maricopa County were often housed within community, senior, or religious centers, which offered various services for at least 1500 individuals daily. Many visitors were unemployed and/or homeless. Many learned about a cooling center by word of mouth or by having seen the cooling center’s location. The cooling centers provide a valuable service and reach some of the region’s most vulnerable populations. This project is among the first to systematically evaluate cooling centers from a public health perspective and provides helpful insight to community leaders who are implementing or improving their own network of cooling centers.

ContributorsBerisha, Vjollca (Author) / Hondula, David M. (Author) / Roach, Matthew (Author) / White, Jessica R. (Author) / McKinney, Benita (Author) / Bentz, Darcie (Author) / Mohamed, Ahmed (Author) / Uebelherr, Joshua (Author) / Goodin, Kate (Author)
Created2016-09-23
132900-Thumbnail Image.png
Description
Photovoltaic panels are commonly used for their versatility in on-site generation of clean electricity in urban environments, specifically on rooftops. However, their implementation on rooftops poses potential (positive and negative) impacts on the energy use of buildings, and urban climates. The negative impacts are compounded if PV is installed on

Photovoltaic panels are commonly used for their versatility in on-site generation of clean electricity in urban environments, specifically on rooftops. However, their implementation on rooftops poses potential (positive and negative) impacts on the energy use of buildings, and urban climates. The negative impacts are compounded if PV is installed on top of a high-albedo rooftop. This study quantitively investigates these impacts from PV installation on top of a building with a white roof in Phoenix, AZ. We supplemented our measurements with EnergyPlus simulations to model the energy implications for archetypical residential and retail buildings and calculated the energy penalty to generation ratio as well as sensible heat flux for each combination of panel height and building type. Results indicate that the daily cooling energy penalty to due blockage of outgoing longwave radiation can be 4.9—11.2% of the PV generation. In addition, while we observed a small decrease in nighttime sensible heat flux to the ambient, PV cases increased the daytime heat flux by more than a factor of 10. This study highlights the potential unintended consequences of rooftop PV under certain conditions and provides a broader perspective for building designers and urban planners.
ContributorsBrown, Kyle (Author) / Sailor, David (Thesis director) / Phelan, Patrick (Committee member) / Department of Physics (Contributor) / Dean, W.P. Carey School of Business (Contributor) / School of Sustainability (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
160731-Thumbnail Image.png
Description

The City of Phoenix Street Transportation Department partnered with the Rob and Melani Walton Sustainability Solutions Service at Arizona State University (ASU) and researchers from various ASU schools to evaluate the effectiveness, performance, and community perception of the new pavement coating. The data collection and analysis occurred across multiple neighborhoods

The City of Phoenix Street Transportation Department partnered with the Rob and Melani Walton Sustainability Solutions Service at Arizona State University (ASU) and researchers from various ASU schools to evaluate the effectiveness, performance, and community perception of the new pavement coating. The data collection and analysis occurred across multiple neighborhoods and at varying times across days and/or months over the course of one year (July 15, 2020–July 14, 2021), allowing the team to study the impacts of the surface treatment under various weather conditions.

Created2021-09