Matching Items (13)
141408-Thumbnail Image.png
Description

Creating a Healthier, More Livable and Prosperous Phoenix

Phoenix is poised to become the next great American City. The Tree and Shade Master Plan presents Phoenix’s leaders and residents a roadmap to creating a 21st Century desert city. The urban forest is a keystone to creating a sustainable city because it

Creating a Healthier, More Livable and Prosperous Phoenix

Phoenix is poised to become the next great American City. The Tree and Shade Master Plan presents Phoenix’s leaders and residents a roadmap to creating a 21st Century desert city. The urban forest is a keystone to creating a sustainable city because it solves many problems with one single solution. By investing in trees and the urban forest, the city can reduce its carbon footprint, decrease energy costs, reduce storm water runoff, increase biodiversity, address the urban heat island effect, clean the air, and increase property values. In addition, trees can help to create walkable streets and vibrant pedestrian places. More trees will not solve all the problems, but it is known that for every dollar invested in the urban forest results in an impressive return of $2.23 in benefits.

Phoenix has a strong foundation on which to build the future. Phoenix residents value natural resources and have voted repeatedly to invest in the living infrastructure. For instance, the Phoenix Parks and Preserve Initiative was passed twice with over 75 percent voter approval. This modest sales tax has purchased land for the Sonoran Preserve, funded habitat restoration efforts along Rio Salado, built new parks and planted hundreds of new trees. These projects and others like it provide the base for a healthy urban forest. Trees and engineered shade have the potential to be one of the city’s greatest assets and the Tree and Shade Master Plan provides the framework for creating a healthier, more livable and prosperous Phoenix.

The Urban Forest – Trees for People

The urban forest is a critical component of the living infrastructure. It benefits and attracts residents and tourists alike to live, work, shop and play in the city. Phoenix’s urban forest is a diverse ecosystem of soils, vegetation, trees, associated organisms, air, water, wildlife and people. The urban forest is found not only in parks, mountain preserves and native desert areas, but also in neighborhoods, commercial corridors, industrial parks and along streets. The urban forest is made up of a rich mosaic of private and public property that surrounds the city and provides many environmental, economic, and social benefits.

In order for the urban forest to be a profitable investment, Phoenix must do more than just plant trees. The entire lifecycle of the tree must be addressed because the current planting, maintenance, and irrigation practices are preventing many trees from providing their maximum return on investment. The Tree and Shade Master Plan provides a detailed roadmap to address these issues, as well as many others, with realistic and incremental steps. To succeed, this plan requires a long-term investment from the residents and leaders of Phoenix.

Trees are Solution Multipliers

Solution multipliers solve numerous problems simultaneously. Trees are a perfect example of a solution multiplier because when planted and maintained correctly, they can provide many economic, environmental, and social benefits. According to the US Forest Service, trees benefit the community by: providing a cooling effect that reduces energy costs; improving air quality; strengthening quality of place and the local economy; reducing storm water runoff; improving social connections; promoting smart growth and compact development; and creating walkable communities (US Forest Service and Urban & Community Forestry). Trees are high-yield assets; for example, the City of Chicago values its trees at $2.3 billion dollars. Trees have a documented return on investment (ROI) in Arizona of $2.23 for every $1 invested (US Department of Agriculture Forest Service). This demonstrates the important role that trees have within the city's economy. This is why it is critical to manage and invest in the urban forest; the health of the urban forest is closely linked to the economic health of the city.

Maintainable Infrastructure

Phoenix is a desert city that has a history of several decades of drought. In order to achieve a healthy urban forest we must use water wisely. Currently, 60 percent of Phoenix’s water is used outdoors, mainly for landscape irrigation. According to the City of Phoenix’s Water Services Department, Phoenix has an adequate sustainable water supply to meet the State of Arizona’s 100-year assured water supply standard. This includes growth in Phoenix’s system water demand over the next 20 years or more. Nonetheless, to achieve a maintainable urban forest, water must be used more efficiently. This is done with high-efficiency irrigation systems, use of drought-tolerant plant material, strategic placement of shade corridors and continued education. In order for a healthy urban forest to exist, it must be coupled with strong water management.

Implementation

The Urban Forest Infrastructure Team and the Parks and Recreation Department are charged with coordinating and maintaining the Tree and Shade Master Plan. Many City departments will implement the plan as they work to fulfill their own missions. The Tree and Shade Master Plan will not only provide a framework to achieve an average 25 percent tree canopy coverage by 2030 but will also help to achieve many goals and policies from the Green Phoenix Initiative and the voter ratified General Plan.

The plan proposes incremental steps to achieve the 2030 vision and canopy goal. The City of Phoenix is beginning to put a process in place to preserve, maintain, and redevelop the urban forest. This plan intends to increase the quality of life and economic vitality of the city by recommending ways to create a sustainable urban forest for future generations.

ContributorsCity of Phoenix (Contributor)
Created2010
141431-Thumbnail Image.png
Description

The relationship between the characteristics of the urban land system and land surface temperature (LST) has received increasing attention in urban heat island and sustainability research, especially for desert cities. This research generally employs medium or coarser spatial resolution data and primarily focuses on the effects of a few classes

The relationship between the characteristics of the urban land system and land surface temperature (LST) has received increasing attention in urban heat island and sustainability research, especially for desert cities. This research generally employs medium or coarser spatial resolution data and primarily focuses on the effects of a few classes of land-cover composition and pattern at the neighborhood or larger level using regression models. This study explores the effects of land system architecture—composition and configuration, both pattern and shape, of fine-grain land-cover classes—on LST of single family residential parcels in the Phoenix, Arizona (southwestern USA) metropolitan area. A 1 m resolution land-cover map is used to calculate land architecture metrics at the parcel level, and 6.8 m resolution MODIS/ASTER data are employed to retrieve LST. Linear mixed-effects models quantify the impacts of land configuration on LST at the parcel scale, controlling for the effects of land composition and neighborhood characteristics. Results indicate that parcel-level land-cover composition has the strongest association with daytime and nighttime LST, but the configuration of this cover, foremost compactness and concentration, also affects LST, with different associations between land architecture and LST at nighttime and daytime. Given information on land system architecture at the parcel level, additional information based on geographic and socioeconomic variables does not improve the generalization capability of the statistical models. The results point the way towards parcel-level land-cover design that helps to mitigate the urban heat island effect for warm desert cities, although tradeoffs with other sustainability indicators must be considered.

ContributorsLi, Xiaoxiao (Author) / Kamarianakis, Yiannis (Author) / Ouyang, Yun (Author) / Turner II, B. L. (Author) / Brazel, Anthony J. (Author)
Created2017-02-14
141447-Thumbnail Image.png
Description

Preventing heat-associated morbidity and mortality is a public health priority in Maricopa County, Arizona (United States). The objective of this project was to evaluate Maricopa County cooling centers and gain insight into their capacity to provide relief for the public during extreme heat events. During the summer of 2014, 53

Preventing heat-associated morbidity and mortality is a public health priority in Maricopa County, Arizona (United States). The objective of this project was to evaluate Maricopa County cooling centers and gain insight into their capacity to provide relief for the public during extreme heat events. During the summer of 2014, 53 cooling centers were evaluated to assess facility and visitor characteristics. Maricopa County staff collected data by directly observing daily operations and by surveying managers and visitors. The cooling centers in Maricopa County were often housed within community, senior, or religious centers, which offered various services for at least 1500 individuals daily. Many visitors were unemployed and/or homeless. Many learned about a cooling center by word of mouth or by having seen the cooling center’s location. The cooling centers provide a valuable service and reach some of the region’s most vulnerable populations. This project is among the first to systematically evaluate cooling centers from a public health perspective and provides helpful insight to community leaders who are implementing or improving their own network of cooling centers.

ContributorsBerisha, Vjollca (Author) / Hondula, David M. (Author) / Roach, Matthew (Author) / White, Jessica R. (Author) / McKinney, Benita (Author) / Bentz, Darcie (Author) / Mohamed, Ahmed (Author) / Uebelherr, Joshua (Author) / Goodin, Kate (Author)
Created2016-09-23
160731-Thumbnail Image.png
Description

The City of Phoenix Street Transportation Department partnered with the Rob and Melani Walton Sustainability Solutions Service at Arizona State University (ASU) and researchers from various ASU schools to evaluate the effectiveness, performance, and community perception of the new pavement coating. The data collection and analysis occurred across multiple neighborhoods

The City of Phoenix Street Transportation Department partnered with the Rob and Melani Walton Sustainability Solutions Service at Arizona State University (ASU) and researchers from various ASU schools to evaluate the effectiveness, performance, and community perception of the new pavement coating. The data collection and analysis occurred across multiple neighborhoods and at varying times across days and/or months over the course of one year (July 15, 2020–July 14, 2021), allowing the team to study the impacts of the surface treatment under various weather conditions.

Created2021-09
164768-Thumbnail Image.png
Description

In the US, underrepresented racial and ethnic minorities receive less than adequate health care in comparison to White Americans. This is attributed to multiple factors, including the long history of structural racism in the US and in the medical field in particular. A factor that is still prevalent today is

In the US, underrepresented racial and ethnic minorities receive less than adequate health care in comparison to White Americans. This is attributed to multiple factors, including the long history of structural racism in the US and in the medical field in particular. A factor that is still prevalent today is the lack of diversity within the healthcare workforce. Racial and ethnic minorities are underrepresented in most healthcare occupations. Moreover, many physicians may continue to harbor implicit biases that may interfere with giving adequate care to patients of different backgrounds. We propose that diversity in healthcare should be increased through educational programs and a revamp of existing systems such as medical schools. The increased diversity would mitigate some of the health disparities that exist amongst minorities, as medical professionals are more likely to give adequate care to those who are members of the same community. Increased diversity would also help to increase the cultural competency of physicians as a whole.

ContributorsLopez, Adriana (Author) / Webb, Linden (Co-author) / Martin, Thomas (Thesis director) / Feagan, Mathieu (Committee member) / Barrett, The Honors College (Contributor) / Harrington Bioengineering Program (Contributor)
Created2022-05
164444-Thumbnail Image.png
Description
In the US, underrepresented racial and ethnic minorities receive less than adequate health care in comparison to White Americans. This is attributed to multiple factors, including the long history of structural racism in the US and in the medical field in particular. A factor that is still prevalent today is

In the US, underrepresented racial and ethnic minorities receive less than adequate health care in comparison to White Americans. This is attributed to multiple factors, including the long history of structural racism in the US and in the medical field in particular. A factor that is still prevalent today is the lack of diversity within the healthcare workforce. Racial and ethnic minorities are underrepresented in most healthcare occupations. Moreover, many physicians may continue to harbor implicit biases that may interfere with giving adequate care to patients of different backgrounds. We propose that diversity in healthcare should be increased through educational programs and a revamp of existing systems such as medical schools. The increased diversity would mitigate some of the health disparities that exist amongst minorities, as medical professionals are more likely to give adequate care to those who are members of the same community. Increased diversity would also help to increase the cultural competency of physicians as a whole.
ContributorsWebb, Linden (Author) / Lopez, Adriana (Co-author) / Martin, Thomas (Thesis director) / Feagan, Mathieu (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor)
Created2022-05
Description

En la zona metropolitana de Phoenix, el calor urbano está afectando la salud, la seguridad y la economía y se espera que estos impactos empeoren con el tiempo. Se prevé que el número de días por encima de 110˚F aumentará más del doble para el 2060. En mayo de 2017,

En la zona metropolitana de Phoenix, el calor urbano está afectando la salud, la seguridad y la economía y se espera que estos impactos empeoren con el tiempo. Se prevé que el número de días por encima de 110˚F aumentará más del doble para el 2060. En mayo de 2017, The Nature Conservancy, el Departamento de Salud Pública del condado de Maricopa, Central Arizona Conservation Alliance, la Red de Investigación en Sostenibilidad sobre la Resiliencia Urbana a Eventos Extremos, el Centro de Investigación del Clima Urbano de Arizona State University y el Center for Whole Communities lanzaron un proceso participativo de planificación de acciones contra el calor para identificar tanto estrategias de mitigación como de adaptación a fin de reducir directamente el calor y mejorar la capacidad de los residentes para lidiar con el calor. Las organizaciones comunitarias con relaciones existentes en tres vecindarios seleccionados para la planificación de acciones contra el calor se unieron más tarde al equipo del proyecto: Phoenix Revitalization Corporation, RAILMesa y Puente Movement. Más allá de construir un plan de acción comunitario contra el calor y completar proyectos de demostración, este proceso participativo fue diseñado para desarrollar conciencia, iniciativa y cohesión social en las comunidades subrepresentadas. Asimismo el proceso de planificación de acciones contra el calor fue diseñado para servir como modelo para esfuerzos futuros de resiliencia al calor y crear una visión local, contextual y culturalmente apropiada de un futuro más seguro y saludable. El método iterativo de planificación y participación utilizado por el equipo del proyecto fortaleció las relaciones dentro y entre los vecindarios, las organizaciones comunitarias, los responsables de la toma de decisiones y el equipo núcleo, y combinó la sabiduría de la narración de historias y la evidencia científica para comprender mejor los desafíos actuales y futuros que enfrentan los residentes durante eventos de calor extremo. Como resultado de tres talleres en cada comunidad, los residentes presentaron ideas que quieren ver implementadas para aumentar su comodidad y seguridad térmica durante los días de calor extremo.

Como se muestra a continuación, las ideas de los residentes se interceptaron en torno a conceptos similares, pero las soluciones específicas variaron entre los vecindarios. Por ejemplo, a todos los vecindarios les gustaría agregar sombra a sus corredores peatonales, pero variaron las preferencias para la ubicación de las mejoras para dar sombra. Algunos vecindarios priorizaron las rutas de transporte público, otros priorizaron las rutas utilizadas por los niños en su camino a la escuela y otros quieren paradas de descanso con sombra en lugares clave. Surgieron cuatro temas estratégicos generales en los tres vecindarios: promover y educar; mejorar la comodidad/capacidad de afrontamiento; mejorar la seguridad; fortalecer la capacidad. Estos temas señalan que existen serios desafíos de seguridad contra el calor en la vida diaria de los residentes y que la comunidad, los negocios y los sectores responsables de la toma de decisión deben abordar esos desafíos.

Los elementos del plan de acción contra el calor están diseñados para incorporarse a otros esfuerzos para aliviar el calor, crear ciudades resilientes al clima y brindar salud y seguridad pública. Los socios de implementación del plan de acción contra el calor provienen de la región de la zona metropolitana de Phoenix, y se brindan recomendaciones para apoyar la transformación a una ciudad más fresca.

Para ampliar la escala de este enfoque, los miembros del equipo del proyecto recomiendan a) compromiso continuo e inversiones en estos vecindarios para implementar el cambio señalado como vital por los residentes, b) repetir el proceso de planificación de acción contra el calor con líderes comunitarios en otros vecindarios, y c) trabajar con las ciudades, los planificadores urbanos y otras partes interesadas para institucionalizar este proceso, apoyando las políticas y el uso de las métricas propuestas para crear comunidades más frescas.

ContributorsMesserschmidt, Maggie (Contributor) / Guardaro, Melissa (Contributor) / White, Jessica R. (Contributor) / Berisha, Vjollca (Contributor) / Hondula, David M. (Contributor) / Feagan, Mathieu (Contributor) / Grimm, Nancy (Contributor) / Beule, Stacie (Contributor) / Perea, Masavi (Contributor) / Ramirez, Maricruz (Contributor) / Olivas, Eva (Contributor) / Bueno, Jessica (Contributor) / Crummey, David (Contributor) / Winkle, Ryan (Contributor) / Rothballer, Kristin (Contributor) / Mocine-McQueen, Julian (Contributor) / Maurer, Maria (Artist) / Coseo, Paul (Artist) / Crank, Peter J (Designer) / Broadbent, Ashley (Designer) / McCauley, Lisa (Designer) / Nature's Cooling Systems Project (Contributor) / Nature Conservancy (U.S.) (Contributor) / Phoenix Revitalization Corporation (Contributor) / Puente Movement (Contributor) / Maricopa County (Ariz.). Department of Public Health (Contributor) / Central Arizona Conservation Alliance (Contributor) / Arizona State University. Urban Climate Research Center (Contributor) / Arizona State University. Urban Resilience to Extremes Sustainability Research Network (Contributor) / Center for Whole Communities (Contributor) / RAILmesa (Contributor) / Vitalyst Health Foundation (Funder)
Created2022
156576-Thumbnail Image.png
Description
The primary objective in time series analysis is forecasting. Raw data often exhibits nonstationary behavior: trends, seasonal cycles, and heteroskedasticity. After data is transformed to a weakly stationary process, autoregressive moving average (ARMA) models may capture the remaining temporal dynamics to improve forecasting. Estimation of ARMA can be performed

The primary objective in time series analysis is forecasting. Raw data often exhibits nonstationary behavior: trends, seasonal cycles, and heteroskedasticity. After data is transformed to a weakly stationary process, autoregressive moving average (ARMA) models may capture the remaining temporal dynamics to improve forecasting. Estimation of ARMA can be performed through regressing current values on previous realizations and proxy innovations. The classic paradigm fails when dynamics are nonlinear; in this case, parametric, regime-switching specifications model changes in level, ARMA dynamics, and volatility, using a finite number of latent states. If the states can be identified using past endogenous or exogenous information, a threshold autoregressive (TAR) or logistic smooth transition autoregressive (LSTAR) model may simplify complex nonlinear associations to conditional weakly stationary processes. For ARMA, TAR, and STAR, order parameters quantify the extent past information is associated with the future. Unfortunately, even if model orders are known a priori, the possibility of over-fitting can lead to sub-optimal forecasting performance. By intentionally overestimating these orders, a linear representation of the full model is exploited and Bayesian regularization can be used to achieve sparsity. Global-local shrinkage priors for AR, MA, and exogenous coefficients are adopted to pull posterior means toward 0 without over-shrinking relevant effects. This dissertation introduces, evaluates, and compares Bayesian techniques that automatically perform model selection and coefficient estimation of ARMA, TAR, and STAR models. Multiple Monte Carlo experiments illustrate the accuracy of these methods in finding the "true" data generating process. Practical applications demonstrate their efficacy in forecasting.
ContributorsGiacomazzo, Mario (Author) / Kamarianakis, Yiannis (Thesis advisor) / Reiser, Mark R. (Committee member) / McCulloch, Robert (Committee member) / Hahn, Richard (Committee member) / Fricks, John (Committee member) / Arizona State University (Publisher)
Created2018
156580-Thumbnail Image.png
Description
This dissertation investigates the classification of systemic lupus erythematosus (SLE) in the presence of non-SLE alternatives, while developing novel curve classification methodologies with wide ranging applications. Functional data representations of plasma thermogram measurements and the corresponding derivative curves provide predictors yet to be investigated for SLE identification. Functional

This dissertation investigates the classification of systemic lupus erythematosus (SLE) in the presence of non-SLE alternatives, while developing novel curve classification methodologies with wide ranging applications. Functional data representations of plasma thermogram measurements and the corresponding derivative curves provide predictors yet to be investigated for SLE identification. Functional nonparametric classifiers form a methodological basis, which is used herein to develop a) the family of ESFuNC segment-wise curve classification algorithms and b) per-pixel ensembles based on logistic regression and fused-LASSO. The proposed methods achieve test set accuracy rates as high as 94.3%, while returning information about regions of the temperature domain that are critical for population discrimination. The undertaken analyses suggest that derivate-based information contributes significantly in improved classification performance relative to recently published studies on SLE plasma thermograms.
ContributorsBuscaglia, Robert, Ph.D (Author) / Kamarianakis, Yiannis (Thesis advisor) / Armbruster, Dieter (Committee member) / Lanchier, Nicholas (Committee member) / McCulloch, Robert (Committee member) / Reiser, Mark R. (Committee member) / Arizona State University (Publisher)
Created2018
156722-Thumbnail Image.png
Description
Large-scale cultivation of perennial bioenergy crops (e.g., miscanthus and switch-

grass) offers unique opportunities to mitigate climate change through avoided fossil fuel use and associated greenhouse gas reduction. Although conversion of existing agriculturally intensive lands (e.g., maize and soy) to perennial bioenergy cropping systems has been shown to reduce near-surface temperatures,

Large-scale cultivation of perennial bioenergy crops (e.g., miscanthus and switch-

grass) offers unique opportunities to mitigate climate change through avoided fossil fuel use and associated greenhouse gas reduction. Although conversion of existing agriculturally intensive lands (e.g., maize and soy) to perennial bioenergy cropping systems has been shown to reduce near-surface temperatures, unintended consequences on natural water resources via depletion of soil moisture may offset these benefits. In the effort of the cross-fertilization across the disciplines of physics-based modeling and spatio-temporal statistics, three topics are investigated in this dissertation aiming to provide a novel quantification and robust justifications of the hydroclimate impacts associated with bioenergy crop expansion. Topic 1 quantifies the hydroclimatic impacts associated with perennial bioenergy crop expansion over the contiguous United States using the Weather Research and Forecasting Model (WRF) dynamically coupled to a land surface model (LSM). A suite of continuous (2000–09) medium-range resolution (20-km grid spacing) ensemble-based simulations is conducted. Hovmöller and Taylor diagrams are utilized to evaluate simulated temperature and precipitation. In addition, Mann-Kendall modified trend tests and Sieve-bootstrap trend tests are performed to evaluate the statistical significance of trends in soil moisture differences. Finally, this research reveals potential hot spots of suitable deployment and regions to avoid. Topic 2 presents spatio-temporal Bayesian models which quantify the robustness of control simulation bias, as well as biofuel impacts, using three spatio-temporal correlation structures. A hierarchical model with spatially varying intercepts and slopes display satisfactory performance in capturing spatio-temporal associations. Simulated temperature impacts due to perennial bioenergy crop expansion are robust to physics parameterization schemes. Topic 3 further focuses on the accuracy and efficiency of spatial-temporal statistical modeling for large datasets. An ensemble of spatio-temporal eigenvector filtering algorithms (hereafter: STEF) is proposed to account for the spatio-temporal autocorrelation structure of the data while taking into account spatial confounding. Monte Carlo experiments are conducted. This method is then used to quantify the robustness of simulated hydroclimatic impacts associated with bioenergy crops to alternative physics parameterizations. Results are evaluated against those obtained from three alternative Bayesian spatio-temporal specifications.
ContributorsWang, Meng, Ph.D (Author) / Kamarianakis, Yiannis (Thesis advisor) / Georgescu, Matei (Thesis advisor) / Fotheringham, A. Stewart (Committee member) / Moustaoui, Mohamed (Committee member) / Reiser, Mark R. (Committee member) / Arizona State University (Publisher)
Created2018