Matching Items (8)
152299-Thumbnail Image.png
Description
Extreme hot-weather events have become life-threatening natural phenomena in many cities around the world, and the health impacts of excessive heat are expected to increase with climate change (Huang et al. 2011; Knowlton et al. 2007; Meehl and Tebaldi 2004; Patz 2005). Heat waves will likely have the worst health

Extreme hot-weather events have become life-threatening natural phenomena in many cities around the world, and the health impacts of excessive heat are expected to increase with climate change (Huang et al. 2011; Knowlton et al. 2007; Meehl and Tebaldi 2004; Patz 2005). Heat waves will likely have the worst health impacts in urban areas, where large numbers of vulnerable people reside and where local-scale urban heat island effects (UHI) retard and reduce nighttime cooling. This dissertation presents three empirical case studies that were conducted to advance our understanding of human vulnerability to heat in coupled human-natural systems. Using vulnerability theory as a framework, I analyzed how various social and environmental components of a system interact to exacerbate or mitigate heat impacts on human health, with the goal of contributing to the conceptualization of human vulnerability to heat. The studies: 1) compared the relationship between temperature and health outcomes in Chicago and Phoenix; 2) compared a map derived from a theoretical generic index of vulnerability to heat with a map derived from actual heat-related hospitalizations in Phoenix; and 3) used geospatial information on health data at two areal units to identify the hot spots for two heat health outcomes in Phoenix. The results show a 10-degree Celsius difference in the threshold temperatures at which heat-stress calls in Phoenix and Chicago are likely to increase drastically, and that Chicago is likely to be more sensitive to climate change than Phoenix. I also found that heat-vulnerability indices are sensitive to scale, measurement, and context, and that cities will need to incorporate place-based factors to increase the usefulness of vulnerability indices and mapping to decision making. Finally, I found that identification of geographical hot-spot of heat-related illness depends on the type of data used, scale of measurement, and normalization procedures. I recommend using multiple datasets and different approaches to spatial analysis to overcome this limitation and help decision makers develop effective intervention strategies.
ContributorsChuang, Wen-Ching (Author) / Gober, Patricia (Thesis advisor) / Boone, Christopher (Committee member) / Guhathakurta, Subhrajit (Committee member) / Ruddell, Darren (Committee member) / Arizona State University (Publisher)
Created2013
141444-Thumbnail Image.png
Description

Background: Vulnerability mapping based on vulnerability indices is a pragmatic approach for highlighting the areas in a city where people are at the greatest risk of harm from heat, but the manner in which vulnerability is conceptualized influences the results.

Objectives: We tested a generic national heat-vulnerability index, based on a

Background: Vulnerability mapping based on vulnerability indices is a pragmatic approach for highlighting the areas in a city where people are at the greatest risk of harm from heat, but the manner in which vulnerability is conceptualized influences the results.

Objectives: We tested a generic national heat-vulnerability index, based on a 10-variable indicator framework, using data on heat-related hospitalizations in Phoenix, Arizona. We also identified potential local risk factors not included in the generic indicators.

Methods: To evaluate the accuracy of the generic index in a city-specific context, we used factor scores, derived from a factor analysis using census tract–level characteristics, as independent variables, and heat hospitalizations (with census tracts categorized as zero-, moderate-, or highincidence) as dependent variables in a multinomial logistic regression model. We also compared the geographical differences between a vulnerability map derived from the generic index and one derived from actual heat-related hospitalizations at the census-tract scale.

Results: We found that the national-indicator framework correctly classified just over half (54%) of census tracts in Phoenix. Compared with all census tracts, high-vulnerability tracts that were misclassified by the index as zero-vulnerability tracts had higher average income and higher proportions of residents with a duration of residency < 5 years.

Conclusion: The generic indicators of vulnerability are useful, but they are sensitive to scale, measurement, and context. Decision makers need to consider the characteristics of their cities to determine how closely vulnerability maps based on generic indicators reflect actual risk of harm.

ContributorsChuang, Wen-Ching (Author) / Gober, Patricia (Author)
Created2015-06-01
141447-Thumbnail Image.png
Description

Preventing heat-associated morbidity and mortality is a public health priority in Maricopa County, Arizona (United States). The objective of this project was to evaluate Maricopa County cooling centers and gain insight into their capacity to provide relief for the public during extreme heat events. During the summer of 2014, 53

Preventing heat-associated morbidity and mortality is a public health priority in Maricopa County, Arizona (United States). The objective of this project was to evaluate Maricopa County cooling centers and gain insight into their capacity to provide relief for the public during extreme heat events. During the summer of 2014, 53 cooling centers were evaluated to assess facility and visitor characteristics. Maricopa County staff collected data by directly observing daily operations and by surveying managers and visitors. The cooling centers in Maricopa County were often housed within community, senior, or religious centers, which offered various services for at least 1500 individuals daily. Many visitors were unemployed and/or homeless. Many learned about a cooling center by word of mouth or by having seen the cooling center’s location. The cooling centers provide a valuable service and reach some of the region’s most vulnerable populations. This project is among the first to systematically evaluate cooling centers from a public health perspective and provides helpful insight to community leaders who are implementing or improving their own network of cooling centers.

ContributorsBerisha, Vjollca (Author) / Hondula, David M. (Author) / Roach, Matthew (Author) / White, Jessica R. (Author) / McKinney, Benita (Author) / Bentz, Darcie (Author) / Mohamed, Ahmed (Author) / Uebelherr, Joshua (Author) / Goodin, Kate (Author)
Created2016-09-23
Description

En la zona metropolitana de Phoenix, el calor urbano está afectando la salud, la seguridad y la economía y se espera que estos impactos empeoren con el tiempo. Se prevé que el número de días por encima de 110˚F aumentará más del doble para el 2060. En mayo de 2017,

En la zona metropolitana de Phoenix, el calor urbano está afectando la salud, la seguridad y la economía y se espera que estos impactos empeoren con el tiempo. Se prevé que el número de días por encima de 110˚F aumentará más del doble para el 2060. En mayo de 2017, The Nature Conservancy, el Departamento de Salud Pública del condado de Maricopa, Central Arizona Conservation Alliance, la Red de Investigación en Sostenibilidad sobre la Resiliencia Urbana a Eventos Extremos, el Centro de Investigación del Clima Urbano de Arizona State University y el Center for Whole Communities lanzaron un proceso participativo de planificación de acciones contra el calor para identificar tanto estrategias de mitigación como de adaptación a fin de reducir directamente el calor y mejorar la capacidad de los residentes para lidiar con el calor. Las organizaciones comunitarias con relaciones existentes en tres vecindarios seleccionados para la planificación de acciones contra el calor se unieron más tarde al equipo del proyecto: Phoenix Revitalization Corporation, RAILMesa y Puente Movement. Más allá de construir un plan de acción comunitario contra el calor y completar proyectos de demostración, este proceso participativo fue diseñado para desarrollar conciencia, iniciativa y cohesión social en las comunidades subrepresentadas. Asimismo el proceso de planificación de acciones contra el calor fue diseñado para servir como modelo para esfuerzos futuros de resiliencia al calor y crear una visión local, contextual y culturalmente apropiada de un futuro más seguro y saludable. El método iterativo de planificación y participación utilizado por el equipo del proyecto fortaleció las relaciones dentro y entre los vecindarios, las organizaciones comunitarias, los responsables de la toma de decisiones y el equipo núcleo, y combinó la sabiduría de la narración de historias y la evidencia científica para comprender mejor los desafíos actuales y futuros que enfrentan los residentes durante eventos de calor extremo. Como resultado de tres talleres en cada comunidad, los residentes presentaron ideas que quieren ver implementadas para aumentar su comodidad y seguridad térmica durante los días de calor extremo.

Como se muestra a continuación, las ideas de los residentes se interceptaron en torno a conceptos similares, pero las soluciones específicas variaron entre los vecindarios. Por ejemplo, a todos los vecindarios les gustaría agregar sombra a sus corredores peatonales, pero variaron las preferencias para la ubicación de las mejoras para dar sombra. Algunos vecindarios priorizaron las rutas de transporte público, otros priorizaron las rutas utilizadas por los niños en su camino a la escuela y otros quieren paradas de descanso con sombra en lugares clave. Surgieron cuatro temas estratégicos generales en los tres vecindarios: promover y educar; mejorar la comodidad/capacidad de afrontamiento; mejorar la seguridad; fortalecer la capacidad. Estos temas señalan que existen serios desafíos de seguridad contra el calor en la vida diaria de los residentes y que la comunidad, los negocios y los sectores responsables de la toma de decisión deben abordar esos desafíos.

Los elementos del plan de acción contra el calor están diseñados para incorporarse a otros esfuerzos para aliviar el calor, crear ciudades resilientes al clima y brindar salud y seguridad pública. Los socios de implementación del plan de acción contra el calor provienen de la región de la zona metropolitana de Phoenix, y se brindan recomendaciones para apoyar la transformación a una ciudad más fresca.

Para ampliar la escala de este enfoque, los miembros del equipo del proyecto recomiendan a) compromiso continuo e inversiones en estos vecindarios para implementar el cambio señalado como vital por los residentes, b) repetir el proceso de planificación de acción contra el calor con líderes comunitarios en otros vecindarios, y c) trabajar con las ciudades, los planificadores urbanos y otras partes interesadas para institucionalizar este proceso, apoyando las políticas y el uso de las métricas propuestas para crear comunidades más frescas.

ContributorsMesserschmidt, Maggie (Contributor) / Guardaro, Melissa (Contributor) / White, Jessica R. (Contributor) / Berisha, Vjollca (Contributor) / Hondula, David M. (Contributor) / Feagan, Mathieu (Contributor) / Grimm, Nancy (Contributor) / Beule, Stacie (Contributor) / Perea, Masavi (Contributor) / Ramirez, Maricruz (Contributor) / Olivas, Eva (Contributor) / Bueno, Jessica (Contributor) / Crummey, David (Contributor) / Winkle, Ryan (Contributor) / Rothballer, Kristin (Contributor) / Mocine-McQueen, Julian (Contributor) / Maurer, Maria (Artist) / Coseo, Paul (Artist) / Crank, Peter J (Designer) / Broadbent, Ashley (Designer) / McCauley, Lisa (Designer) / Nature's Cooling Systems Project (Contributor) / Nature Conservancy (U.S.) (Contributor) / Phoenix Revitalization Corporation (Contributor) / Puente Movement (Contributor) / Maricopa County (Ariz.). Department of Public Health (Contributor) / Central Arizona Conservation Alliance (Contributor) / Arizona State University. Urban Climate Research Center (Contributor) / Arizona State University. Urban Resilience to Extremes Sustainability Research Network (Contributor) / Center for Whole Communities (Contributor) / RAILmesa (Contributor) / Vitalyst Health Foundation (Funder)
Created2022
128408-Thumbnail Image.png
Description

Objective: Little is known about the nationwide patterns in the use of public health informatics systems by local health departments (LHDs) and whether LHDs tend to possess informatics capacity across a broad range of information functionalities or for a narrower range. This study examined patterns and correlates of the presence

Objective: Little is known about the nationwide patterns in the use of public health informatics systems by local health departments (LHDs) and whether LHDs tend to possess informatics capacity across a broad range of information functionalities or for a narrower range. This study examined patterns and correlates of the presence of public health informatics functionalities within LHDs through the creation of a typology of LHD informatics capacities.

Methods: Data was available for 459 LHDs from the 2013 National Association of County and City Health Officials Profile survey. An empirical typology was created through cluster analysis of six public health informatics functionalities: immunization registry, electronic disease registry, electronic lab reporting, electronic health records, health information exchange, electronic syndromic surveillance system. Three-categories of usage emerged (Low, Mid, High). LHD financial, workforce, organization, governance, and leadership characteristics, and types of services provided were explored across categories.

Results: Low-informatics capacity LHDs had lower levels of use of each informatics functionalities than high-informatics capacity LHDs. Mid-informatics capacity LHDs had usage levels equivalent to high-capacity LHDs for the three most common functionalities and equivalent to low-capacity LHDs for the three least common functionalities. Informatics capacity was positively associated with service provision, especially for population-focused services.

Conclusion: Informatics capacity is clustered within LHDs. Increasing LHD informatics capacity may require LHDs with low levels of informatics capacity to expand capacity across a range of functionalities, taking into account their narrower service portfolio. LHDs with mid-level informatics capacity may need specialized support in enhancing capacity for less common technologies.

ContributorsMcCullough, Mac (Author) / Goodin, Kate (Author) / College of Health Solutions (Contributor)
Created2014
128410-Thumbnail Image.png
Description

Background: Vulnerability mapping based on vulnerability indices is a pragmatic approach for highlighting the areas in a city where people are at the greatest risk of harm from heat, but the manner in which vulnerability is conceptualized influences the results.

Objectives: We tested a generic national heat-vulnerability index, based on a

Background: Vulnerability mapping based on vulnerability indices is a pragmatic approach for highlighting the areas in a city where people are at the greatest risk of harm from heat, but the manner in which vulnerability is conceptualized influences the results.

Objectives: We tested a generic national heat-vulnerability index, based on a 10-variable indicator framework, using data on heat-related hospitalizations in Phoenix, Arizona. We also identified potential local risk factors not included in the generic indicators.

Methods: To evaluate the accuracy of the generic index in a city-specific context, we used factor scores, derived from a factor analysis using census tract–level characteristics, as independent variables, and heat hospitalizations (with census tracts categorized as zero-, moderate-, or high-incidence) as dependent variables in a multinomial logistic regression model. We also compared the geographical differences between a vulnerability map derived from the generic index and one derived from actual heat-related hospitalizations at the census-tract scale.

Results: We found that the national-indicator framework correctly classified just over half (54%) of census tracts in Phoenix. Compared with all census tracts, high-vulnerability tracts that were misclassified by the index as zero-vulnerability tracts had higher average income and higher proportions of residents with a duration of residency < 5 years.

Conclusion: The generic indicators of vulnerability are useful, but they are sensitive to scale, measurement, and context. Decision makers need to consider the characteristics of their cities to determine how closely vulnerability maps based on generic indicators reflect actual risk of harm.

Created2015-01-30
128675-Thumbnail Image.png
Description

Human vulnerability to heat varies at a range of spatial scales, especially within cities where there can be noticeable intra-urban differences in heat risk factors. Mapping and visualizing intra-urban heat vulnerability offers opportunities for presenting information to support decision-making. For example the visualization of the spatial variation of heat vulnerability

Human vulnerability to heat varies at a range of spatial scales, especially within cities where there can be noticeable intra-urban differences in heat risk factors. Mapping and visualizing intra-urban heat vulnerability offers opportunities for presenting information to support decision-making. For example the visualization of the spatial variation of heat vulnerability has the potential to enable local governments to identify hot spots of vulnerability and allocate resources and increase assistance to people in areas of greatest need. Recently there has been a proliferation of heat vulnerability mapping studies, all of which, to varying degrees, justify the process of vulnerability mapping in a policy context. However, to date, there has not been a systematic review of the extent to which the results of vulnerability mapping studies have been applied in decision-making. Accordingly we undertook a comprehensive review of 37 recently published papers that use geospatial techniques for assessing human vulnerability to heat. In addition, we conducted an anonymous survey of the lead authors of the 37 papers in order to establish the level of interaction between the researchers as science information producers and local authorities as information users. Both paper review and author survey results show that heat vulnerability mapping has been used in an attempt to communicate policy recommendations, raise awareness and induce institutional networking and learning, but has not as yet had a substantive influence on policymaking or preventive action.

Created2015-10-23
141428-Thumbnail Image.png
Description

This study assessed the spatial distribution of vulnerability to extreme heat in 1990 and 2000 within metropolitan Phoenix based on an index of seven equally weighted measures of physical exposure and adaptive capacity. These measures were derived from spatially interpolated climate, normalized differential vegetation index, and U.S. Census data. From

This study assessed the spatial distribution of vulnerability to extreme heat in 1990 and 2000 within metropolitan Phoenix based on an index of seven equally weighted measures of physical exposure and adaptive capacity. These measures were derived from spatially interpolated climate, normalized differential vegetation index, and U.S. Census data. From resulting vulnerability maps, we also analyzed population groups living in areas of high heat vulnerability. Results revealed that landscapes of heat vulnerability changed substantially in response to variations in physical and socioeconomic factors, with significant alterations to spatial distribution of vulnerability especially between eastern and western sectors of Phoenix. These changes worked to the detriment of Phoenix's Hispanic population and the elderly concentrated in urban-fringe retirement communities.

ContributorsChow, Winston, 1951- (Author) / Chuang, Wen-Ching (Author) / Gober, Patricia (Author)
Created2011-08-18