Matching Items (90)
Filtering by

Clear all filters

156784-Thumbnail Image.png
Description
Measuring molecular interaction with membrane proteins is critical for understanding cellular functions, validating biomarkers and screening drugs. Despite the importance, developing such a capability has been a difficult challenge, especially for small molecules binding to membrane proteins in their native cellular environment. The current mainstream practice is to isolate membrane

Measuring molecular interaction with membrane proteins is critical for understanding cellular functions, validating biomarkers and screening drugs. Despite the importance, developing such a capability has been a difficult challenge, especially for small molecules binding to membrane proteins in their native cellular environment. The current mainstream practice is to isolate membrane proteins from the cell membranes, which is difficult and often lead to the loss of their native structures and functions. In this thesis, novel detection methods for in situ quantification of molecular interactions with membrane proteins are described.

First, a label-free surface plasmon resonance imaging (SPRi) platform is developed for the in situ detection of the molecular interactions between membrane protein drug target and its specific antibody drug molecule on cell surface. With this method, the binding kinetics of the drug-target interaction is quantified for drug evaluation and the receptor density on the cell surface is also determined.

Second, a label-free mechanically amplification detection method coupled with a microfluidic device is developed for the detection of both large and small molecules on single cells. Using this method, four major types of transmembrane proteins, including glycoproteins, ion channels, G-protein coupled receptors (GPCRs) and tyrosine kinase receptors on single whole cells are studied with their specific drug molecules. The basic principle of this method is established by developing a thermodynamic model to express the binding-induced nanometer-scale cellular deformation in terms of membrane protein density and cellular mechanical properties. Experiments are carried out to validate the model.

Last, by tracking the cell membrane edge deformation, molecular binding induced downstream event – granule exocytosis is measured with a dual-optical imaging system. Using this method, the single granule exocytosis events in single cells are monitored and the temporal-spatial distribution of the granule fusion-induced cell membrane deformation are mapped. Different patterns of granule release are resolved, including multiple release events occurring close in time and position. The label-free cell membrane deformation tracking method was validated with the simultaneous fluorescence recording. And the simultaneous cell membrane deformation detection and fluorescence recording allow the study of the propagation of the granule release-induced membrane deformation along cell surfaces.
ContributorsZhang, Fenni (Author) / Tao, Nongjian (Thesis advisor) / Chae, Junseok (Committee member) / Borges, Chad (Committee member) / Jing, Tianwei (Committee member) / Wang, Shaopeng (Committee member) / Arizona State University (Publisher)
Created2018
156786-Thumbnail Image.png
Description
Proteins play a central role to human body and biological activities. As powerful tools for protein detections, many surface plasmon resonance based techniques have been developed to enhance the sensitivity. However, sensitivity is not the only final goal. As a biosensor, four things really matter: sensitivity, specificity, resolution (temporal/spatial) and

Proteins play a central role to human body and biological activities. As powerful tools for protein detections, many surface plasmon resonance based techniques have been developed to enhance the sensitivity. However, sensitivity is not the only final goal. As a biosensor, four things really matter: sensitivity, specificity, resolution (temporal/spatial) and throughput.

This dissertation presents several works on developing novel plasmonic based techniques for protein detections on the last two aspects to extend the application field. A fast electrochemically controlled plasmonic detection technique is first developed with the capability of monitoring electrochemical signal with nanosecond response time. The study reveals that the conformational gating of electron transfer in a redox protein (cytochrome c) takes place over a broad range of time scales (sub-µs to ms). The second platform integrates ultra-low volume piezoelectric liquid dispensing and plasmonic imaging detection to monitor different protein binding processes simultaneously with low sample cost. Experiment demonstrates the system can observe binding kinetics in 10×10 microarray of 6 nL droplet, with variations of kinetic rate constants among spots less than ±5%. A focused plasmonic imaging system with bi-cell algorithm is also proposed for spatial resolution enhancement. The two operation modes, scanning mode and focus mode, can be applied for different purposes. Measurement of bacterial aggregation demonstrates the higher spatial resolution. Detections of polystyrene beads binding and 50 nm gold nanoparticles oscillation show a high signal to noise ratio of the system.

The real properties of protein rely on its dynamic personalities. The above works shed light upon fast and high throughput detection of protein kinetics, and enable more applications for plasmonic imaging techniques. It is anticipated that such methods will help to invoke a new surge to unveil the mysteries of biological activities and chemical process.
ContributorsWang, Yan (Author) / Tao, Nongjian (Thesis advisor) / Chae, Junseok (Committee member) / Goryll, Michael (Committee member) / Wang, Shaopeng (Committee member) / Arizona State University (Publisher)
Created2018
157593-Thumbnail Image.png
Description
Environmental pollution has been one of the most challenging problems in modern society and more and more health issues are now linked to environmental pollution and especially, air pollution. Certain sensitive group like patients with asthma are highly influenced by the environmental air quality and knowledge of the daily air

Environmental pollution has been one of the most challenging problems in modern society and more and more health issues are now linked to environmental pollution and especially, air pollution. Certain sensitive group like patients with asthma are highly influenced by the environmental air quality and knowledge of the daily air pollution exposure is of great importance for the management and prevention of asthma attack. Hence small form factor, real time, accurate, sensitive and easy to use portable devices for environmental monitoring are of great value.

Three novel image-based methods for quantitative real time environmental monitoring were introduced and the sensing principle, sensor performances were evaluated through simulation and field tests. The first sensing principle uses surface plasmon resonance (SPR) image and home-made molecular sieve (MS) column to realize real time chemical separation and detection. SPR is sensitive and non-specific, which makes it a desirable optical method for sensitive biological and chemical sensing, the miniaturized MS column provides small area footprint and makes it possible for SPR to record images of the whole column area. The innovative and system level integration approach provide a new way for simultaneous chemical separation and detection. The second sensor uses scattered laser light, Complementary metal-oxide-semiconductor (CMOS) imager and image processing to realize real-time particulate matter (PM) sensing. Complex but low latency algorithm was developed to obtain real time information for PM including PM number, size and size distribution. The third sensor uses gradient based colorimetric sensor, absorbance light signal and image processing to realize real-time Ozone sensing and achieved high sensitivity and substantially longer lifetime compared to conventional colorimetric sensors. The platform provides potential for multi-analyte integration and large-scale consumer use as wearable device.

The three projects provide novel, state-of-the-art and sensitive solutions for environmental and personal exposure monitoring. Moreover, the sensing platforms also provide tools for clinicians and epidemiologists to conduct large scale clinical studies on the adverse health effects of pollutants on various kinds of diseases.
ContributorsDu, Zijian (Author) / Tao, Nongjian (Thesis advisor) / Goryll, Michael (Committee member) / Herckes, Pierre (Committee member) / Tsow, Tsing (Committee member) / Arizona State University (Publisher)
Created2019
153974-Thumbnail Image.png
Description
Massive glycerol cluster ions with many charges (~ 106 Da, ~ ±100 charges) have been generated by electrospray to bombard biomolecules and biological sample surfaces. The low impact energy per nucleon facilitates intact sputtering and ionization of biomolecules which can be subsequently imaged. Various lipids, peptides and proteins have been

Massive glycerol cluster ions with many charges (~ 106 Da, ~ ±100 charges) have been generated by electrospray to bombard biomolecules and biological sample surfaces. The low impact energy per nucleon facilitates intact sputtering and ionization of biomolecules which can be subsequently imaged. Various lipids, peptides and proteins have been studied. The primary cluster ion source has been coupled with an ion-microscope imaging mass spectrometer (TRIFT-1, Physical Electronics). A lateral resolution of ~3µm has been demonstrated, which is acceptable for sub-cellular imaging of animal cells (e.g. single cancer cell imaging in early diagnosis). Since the available amount of target molecules per pixel is limited in biological samples, the measurement of useful ion yields (ratio of detected molecular ion counts to the sample molecules sputtered) is important to determine whether enough ion counts per pixel can be obtained. The useful ion yields of several lipids and peptides are in the 1-3×10-5 range. A 3×3 µm2lipid bilayer can produce ~260 counts/pixel for a meaningful 3×3 µm2 pixel ion image. This method can probably be used in cell imaging in the future, when there is a change in the lipid contents of the cell membrane (e.g. cancer cells vs. normal cells).
ContributorsZhang, Jitao (Author) / Williams, Peter (Thesis advisor) / Hayes, Mark (Committee member) / Nelson, Randall (Committee member) / Arizona State University (Publisher)
Created2015
154668-Thumbnail Image.png
Description
Mechanical properties of cells are important in maintaining physiological functions of biological systems. Quantitative measurement and analysis of mechanical properties can help understand cellular mechanics and its functional relevance and discover physical biomarkers for diseases monitoring and therapeutics.

This dissertation presents a work to develop optical methods for studying cell mechanics

Mechanical properties of cells are important in maintaining physiological functions of biological systems. Quantitative measurement and analysis of mechanical properties can help understand cellular mechanics and its functional relevance and discover physical biomarkers for diseases monitoring and therapeutics.

This dissertation presents a work to develop optical methods for studying cell mechanics which encompasses four applications. Surface plasmon resonance microscopy based optical method has been applied to image intracellular motions and cell mechanical motion. This label-free technique enables ultrafast imaging with extremely high sensitivity in detecting cell deformation. The technique was first applied to study intracellular transportation. Organelle transportation process and displacement steps of motor protein can be tracked using this method. The second application is to study heterogeneous subcellular membrane displacement induced by membrane potential (de)polarization. The application can map the amplitude and direction of cell deformation. The electromechanical coupling of mammalian cells was also observed. The third application is for imaging electrical activity in single cells with sub-millisecond resolution. This technique can fast record actions potentials and also resolve the fast initiation and propagation of electromechanical signals within single neurons. Bright-field optical imaging approach has been applied to the mechanical wave visualization that associated with action potential in the fourth application. Neuron-to-neuron viability of membrane displacement was revealed and heterogeneous subcellular response was observed.

All these works shed light on the possibility of using optical approaches to study millisecond-scale and sub-nanometer-scale mechanical motions. These studies revealed ultrafast and ultra-small mechanical motions at the cellular level, including motor protein-driven motions and electromechanical coupled motions. The observations will help understand cell mechanics and its biological functions. These optical approaches will also become powerful tools for elucidating the interplay between biological and physical functions.
ContributorsYang, Yunze (Author) / Tao, Nongjian (Thesis advisor) / Wang, Shaopeng (Committee member) / Goryll, Michael (Committee member) / Si, Jennie (Committee member) / Arizona State University (Publisher)
Created2016
154082-Thumbnail Image.png
Description
Yersinia enterocolitica is a major foodborne pathogen found worldwide that causes approximately 87,000 human cases and approximately 1,100 hospitalizations per year in the United States. Y. enterocolitica is a very unique pathogen with the domesticated pig acting as the main animal reservoir for pathogenic bio/serotypes, and as the primary source

Yersinia enterocolitica is a major foodborne pathogen found worldwide that causes approximately 87,000 human cases and approximately 1,100 hospitalizations per year in the United States. Y. enterocolitica is a very unique pathogen with the domesticated pig acting as the main animal reservoir for pathogenic bio/serotypes, and as the primary source of human infection. Similar to other gastrointestinal infections, Yersinia enterocolitica is known to trigger autoimmune responses in humans. The most frequent complication associated with Y. enterocolitica is reactive arthritis - an aseptic, asymmetrical inflammation in the peripheral and axial joints, most frequently occurring as an autoimmune response in patients with the HLA-B27 histocompatability antigen. As a foodborne illness it may prove to be a reasonable explanation for some of the cases of arthritis observed in past populations that are considered to be of unknown etiology. The goal of this dissertation project was to study the relationship between the foodborne illness -Y. enterocolitica, and the incidence of arthritis in individuals with and without contact with the domesticated pig.
ContributorsBrown, Starletta (Author) / Hurtado, Ana M (Thesis advisor) / Chowell-Puente, Gerardo (Committee member) / Hill, Kim (Committee member) / Arizona State University (Publisher)
Created2015
154539-Thumbnail Image.png
Description
Cell heterogeneity is widely present in the biological world and exists even in an isogenic population. Resolving the protein heterogeneity at the single cell level is of enormous biological and clinical relevance. However, single cell protein analysis has proven to be challenging due to extremely low amount of protein in

Cell heterogeneity is widely present in the biological world and exists even in an isogenic population. Resolving the protein heterogeneity at the single cell level is of enormous biological and clinical relevance. However, single cell protein analysis has proven to be challenging due to extremely low amount of protein in a single cell and the huge complexity of proteome. This requires appropriate sampling and sensitive detection techniques. Here, a new approach, microfluidics combined with MALDI-TOF mass spectrometry was brought forward, for the analysis of proteins in single cells. The detection sensitivity of peptides as low as 300 molecules and of proteins as low as 10^6 molecules has been demonstrated. Furthermore, an immunoassay was successfully integrated in the microfluidic device for capturing the proteins of interest and further identifying them by subsequent enzymatic digestion. Moreover, an improved microfluidic platform was designed with separate chambers and valves, allowing the absolute quantification by employing iTRAQ tags or an isotopically labeled peptide. The study was further extended to analyze a protein in MCF-7 cell lysate. The approach capable of identifying and quantifying protein molecules in MCF-7 cells is promising for future proteomic studies at the single cell level.
ContributorsYang, Mian (Author) / Ros, Alexandra (Thesis advisor) / Hayes, Mark (Committee member) / Nelson, Randall (Committee member) / Arizona State University (Publisher)
Created2016
154306-Thumbnail Image.png
Description
Charge transport in molecular systems, including DNA (Deoxyribonucleic acid), is involved in many basic chemical and biological processes. Studying their charge transport properties can help developing DNA based electronic devices with many tunable functionalities. This thesis investigates the electric properties of double-stranded DNA, DNA G-quadruplex and dsDNA with modified base.

First,

Charge transport in molecular systems, including DNA (Deoxyribonucleic acid), is involved in many basic chemical and biological processes. Studying their charge transport properties can help developing DNA based electronic devices with many tunable functionalities. This thesis investigates the electric properties of double-stranded DNA, DNA G-quadruplex and dsDNA with modified base.

First, double-stranded DNA with alternating GC sequence and stacked GC sequence were measured with respect to length. The resistance of DNA sequences increases linearly with length, indicating a hopping transport mechanism. However, for DNA sequences with stacked GC, a periodic oscillation is superimposed on the linear length dependence, indicating a partial coherent transport. The result is supported by the finding of delocalization of the highest occupied molecular orbitals of Guanines from theoretical simulation and by fitting based on the Büttiker’s theory.

Then, a DNA G4-duplex structures with a G-quadruplex as the core and DNA duplexes as the arms were studied. Similar conductance values were observed by varying the linker positions, thus a charge splitter is developed. The conductance of the DNA G-tetrads structures was found to be sensitive to the π-stacking at the interface between the G-quadruplex and DNA duplexes by observing a higher conductance value when one duplex was removed and a polyethylene glycol (PEG) linker was added into the interface. This was further supported by molecular dynamic simulations.

Finally, a double-stranded DNA with one of the bases replaced by an anthraquinone group was studied via electrochemical STM break junction technique. Anthraquinone can be reversibly switched into the oxidized state or reduced state, to give a low conductance or high conductance respectively. Furthermore, the thermodynamics and kinetics properties of the switching were systematically studied. Theoretical simulation shows that the difference between the two states is due to a difference in the energy alignment with neighboring Guanine bases.
ContributorsXiang, Liming (Author) / Tao, Nongjian (Thesis advisor) / Lindsay, Stuart (Committee member) / Gould, Ian (Committee member) / Arizona State University (Publisher)
Created2016
153997-Thumbnail Image.png
Description
Detection of molecular interactions is critical for understanding many biological processes, for detecting disease biomarkers, and for screening drug candidates. Fluorescence-based approach can be problematic, especially when applied to the detection of small molecules. Various label-free techniques, such as surface plasmon resonance technique are sensitive to mass, making it extremely

Detection of molecular interactions is critical for understanding many biological processes, for detecting disease biomarkers, and for screening drug candidates. Fluorescence-based approach can be problematic, especially when applied to the detection of small molecules. Various label-free techniques, such as surface plasmon resonance technique are sensitive to mass, making it extremely challenging to detect small molecules. In this thesis, novel detection methods for molecular interactions are described.

First, a simple detection paradigm based on reflectance interferometry is developed. This method is simple, low cost and can be easily applied for protein array detection.

Second, a label-free charge sensitive optical detection (CSOD) technique is developed for detecting of both large and small molecules. The technique is based on that most molecules relevant to biomedical research and applications are charged or partially charged. An optical fiber is dipped into the well of a microplate. It detects the surface charge of the fiber, which does not decrease with the size (mass) of the molecule, making it particularly attractive for studying small molecules.

Third, a method for mechanically amplification detection of molecular interactions (MADMI) is developed. It provides quantitative analysis of small molecules interaction with membrane proteins in intact cells. The interactions are monitored by detecting a mechanical deformation in the membrane induced by the molecular interactions. With this novel method small molecules and membrane proteins interaction in the intact cells can be detected. This new paradigm provides mechanical amplification of small interaction signals, allowing us to measure the binding kinetics of both large and small molecules with membrane proteins, and to analyze heterogeneous nature of the binding kinetics between different cells, and different regions of a single cell.

Last, by tracking the cell membrane edge deformation, binding caused downstream event – granule secretory has been measured. This method focuses on the plasma membrane change when granules fuse with the cell. The fusion of granules increases the plasma membrane area and thus the cell edge expands. The expansion is localized at the vesicle release location. Granule size was calculated based on measured edge expansion. The membrane deformation due to the granule release is real-time monitored by this method.
ContributorsGuan, Yan (Author) / Tao, Nongjian (Thesis advisor) / LaBaer, Joshua (Committee member) / Goryll, Michael (Committee member) / Wang, Shaopeng (Committee member) / Arizona State University (Publisher)
Created2015
152919-Thumbnail Image.png
Description
Monitoring of air pollutants is critical for many applications and studies. In

order to access air pollutants with high spatial and temporal resolutions, it is

necessary

Monitoring of air pollutants is critical for many applications and studies. In

order to access air pollutants with high spatial and temporal resolutions, it is

necessary to develop an affordable, small size and weight, low power, high

sensitivity and selectivity, and wireless enable device that can provide real time

monitoring of air pollutants. Three different kind of such devices are presented, they

are targeting environmental pollutants such as volatile organic components (VOCs),

nitrogen dioxide (NO2) and ozone. These devices employ innovative detection

methods, such as quartz crystal tuning fork coated with molecularly imprinted

polymer and chemical reaction induced color change colorimetric sensing. These

portable devices are validated using the gold standards in the laboratory, and their

functionality and capability are proved during the field tests, make them great tools

for various air quality monitoring applications.
ContributorsChen, Cheng, Ph.D (Author) / Tao, Nongjian (Thesis advisor) / Kiaei, Sayfe (Committee member) / Zhang, Yanchao (Committee member) / Tsow, Tsing (Committee member) / Arizona State University (Publisher)
Created2014