Matching Items (132)
130348-Thumbnail Image.png
Description
Background
Seroepidemiological studies before and after the epidemic wave of H1N1-2009 are useful for estimating population attack rates with a potential to validate early estimates of the reproduction number, R, in modeling studies.
Methodology/Principal Findings
Since the final epidemic size, the proportion of individuals in a population who become infected during an epidemic,

Background
Seroepidemiological studies before and after the epidemic wave of H1N1-2009 are useful for estimating population attack rates with a potential to validate early estimates of the reproduction number, R, in modeling studies.
Methodology/Principal Findings
Since the final epidemic size, the proportion of individuals in a population who become infected during an epidemic, is not the result of a binomial sampling process because infection events are not independent of each other, we propose the use of an asymptotic distribution of the final size to compute approximate 95% confidence intervals of the observed final size. This allows the comparison of the observed final sizes against predictions based on the modeling study (R = 1.15, 1.40 and 1.90), which also yields simple formulae for determining sample sizes for future seroepidemiological studies. We examine a total of eleven published seroepidemiological studies of H1N1-2009 that took place after observing the peak incidence in a number of countries. Observed seropositive proportions in six studies appear to be smaller than that predicted from R = 1.40; four of the six studies sampled serum less than one month after the reported peak incidence. The comparison of the observed final sizes against R = 1.15 and 1.90 reveals that all eleven studies appear not to be significantly deviating from the prediction with R = 1.15, but final sizes in nine studies indicate overestimation if the value R = 1.90 is used.
Conclusions
Sample sizes of published seroepidemiological studies were too small to assess the validity of model predictions except when R = 1.90 was used. We recommend the use of the proposed approach in determining the sample size of post-epidemic seroepidemiological studies, calculating the 95% confidence interval of observed final size, and conducting relevant hypothesis testing instead of the use of methods that rely on a binomial proportion.
Created2011-03-24
130349-Thumbnail Image.png
Description
Background
Several past studies have found that media reports of suicides and homicides appear to subsequently increase the incidence of similar events in the community, apparently due to the coverage planting the seeds of ideation in at-risk individuals to commit similar acts.
Methods
Here we explore whether or not contagion is evident in

Background
Several past studies have found that media reports of suicides and homicides appear to subsequently increase the incidence of similar events in the community, apparently due to the coverage planting the seeds of ideation in at-risk individuals to commit similar acts.
Methods
Here we explore whether or not contagion is evident in more high-profile incidents, such as school shootings and mass killings (incidents with four or more people killed). We fit a contagion model to recent data sets related to such incidents in the US, with terms that take into account the fact that a school shooting or mass murder may temporarily increase the probability of a similar event in the immediate future, by assuming an exponential decay in contagiousness after an event.
Conclusions
We find significant evidence that mass killings involving firearms are incented by similar events in the immediate past. On average, this temporary increase in probability lasts 13 days, and each incident incites at least 0.30 new incidents (p = 0.0015). We also find significant evidence of contagion in school shootings, for which an incident is contagious for an average of 13 days, and incites an average of at least 0.22 new incidents (p = 0.0001). All p-values are assessed based on a likelihood ratio test comparing the likelihood of a contagion model to that of a null model with no contagion. On average, mass killings involving firearms occur approximately every two weeks in the US, while school shootings occur on average monthly. We find that state prevalence of firearm ownership is significantly associated with the state incidence of mass killings with firearms, school shootings, and mass shootings.
Created2015-07-02
131199-Thumbnail Image.png
Description
The experiments conducted in this report supported previous evidence (Bethany et al., 2019) that a newly identified predatory bacterium causes a higher rate of mortality in the biological soil crust cyanobacterium M. vaginatus when in hot soils than in cold soils. I predicted that the extracellular propagules of this predatory

The experiments conducted in this report supported previous evidence (Bethany et al., 2019) that a newly identified predatory bacterium causes a higher rate of mortality in the biological soil crust cyanobacterium M. vaginatus when in hot soils than in cold soils. I predicted that the extracellular propagules of this predatory bacterium were inactivated at seasonally low temperatures, rendering them non-viable when introduced to M. vaginatus at room temperature. However, I found that the predatory bacterium became only transiently inactive at low temperatures, recovering its pathogenicity when later exposed to warmer temperatures. By contrast, inactivation of infectivity was complete by exposure in both liquid and dry conditions for five days at 40 °C. I also expected that its infectivity towards M. vaginatus was temperature dependent. Indeed, infection was hampered and did not cause high mortality when predator and prey were incubated at or below 10 °C, which could have been due to slowed metabolisms of M. vaginatus or to an inability of the predatory bacterium to attack in cold conditions. Above 10 °C, when M. vaginatus grew faster, time to full death of predator/prey incubations correlated with the rate of growth of healthy cultures.
The experiments in this study observed a correlation between the growth rate of uninfected cultures and the decay rate of infected cultures, meaning that temperatures that cultures that displayed a higher growth rate for uninfected M. vaginatus would die faster when infected with the predatory bacterium. Infected cultures that were incubated at temperatures 4 and 10 °C did not display death and this could have been due to lower activity of M. vaginatus at lower temperatures or the inability for the predatory bacterium to attack at lower temperatures.
ContributorsAhamed, Anisa Nour (Author) / Garcia-Pichel, Ferran (Thesis director) / Giraldo Silva, Ana Maria (Committee member) / Bethany Rakes, Julie (Committee member) / School of Molecular Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
131788-Thumbnail Image.png
Description
Coffee is an important link between the United States and Latin America and an important part of Latin America’s culture and economy. This paper looks at the similarities and differences between coffee organizations in Colombia, Ecuador, Peru, and Guatemala. Colombia has the strongest coffee organizations with the most political power.

Coffee is an important link between the United States and Latin America and an important part of Latin America’s culture and economy. This paper looks at the similarities and differences between coffee organizations in Colombia, Ecuador, Peru, and Guatemala. Colombia has the strongest coffee organizations with the most political power. Guatemala and Peru, to a lesser extent, have well organized and powerful organizations that make up their industry. However, Ecuador has a significantly less organized organization. At their core, each country has a similar structure. There is one organization on the national level that watches out for the industry as a whole. Underneath that, there are smaller, often regional organizations made up of cooperatives pooling their resources for export. They function in similar ways as the national organizations, but have less reach. At the bottom, there are individual cooperatives and independent farmers. These cooperatives do not have much reach or connection to international markets.
ContributorsChabin, James Edward (Author) / Janssen, Marco (Thesis director) / Taylor, Keith (Committee member) / School of Sustainability (Contributor) / School of International Letters and Cultures (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
130356-Thumbnail Image.png
Description
Background
The transmission dynamics of Tuberculosis (TB) involve complex epidemiological and socio-economical interactions between individuals living in highly distinct regional conditions. The level of exogenous reinfection and first time infection rates within high-incidence settings may influence the impact of control programs on TB prevalence. The impact that effective population size and

Background
The transmission dynamics of Tuberculosis (TB) involve complex epidemiological and socio-economical interactions between individuals living in highly distinct regional conditions. The level of exogenous reinfection and first time infection rates within high-incidence settings may influence the impact of control programs on TB prevalence. The impact that effective population size and the distribution of individuals’ residence times in different patches have on TB transmission and control are studied using selected scenarios where risk is defined by the estimated or perceive first time infection and/or exogenous re-infection rates.
Methods
This study aims at enhancing the understanding of TB dynamics, within simplified, two patch, risk-defined environments, in the presence of short term mobility and variations in reinfection and infection rates via a mathematical model. The modeling framework captures the role of individuals’ ‘daily’ dynamics within and between places of residency, work or business via the average proportion of time spent in residence and as visitors to TB-risk environments (patches). As a result, the effective population size of Patch i (home of i-residents) at time t must account for visitors and residents of Patch i, at time t.
Results
The study identifies critical social behaviors mechanisms that can facilitate or eliminate TB infection in vulnerable populations. The results suggest that short-term mobility between heterogeneous patches contributes to significant overall increases in TB prevalence when risk is considered only in terms of direct new infection transmission, compared to the effect of exogenous reinfection. Although, the role of exogenous reinfection increases the risk that come from large movement of individuals, due to catastrophes or conflict, to TB-free areas.
Conclusions
The study highlights that allowing infected individuals to move from high to low TB prevalence areas (for example via the sharing of treatment and isolation facilities) may lead to a reduction in the total TB prevalence in the overall population. The higher the population size heterogeneity between distinct risk patches, the larger the benefit (low overall prevalence) under the same “traveling” patterns. Policies need to account for population specific factors (such as risks that are inherent with high levels of migration, local and regional mobility patterns, and first time infection rates) in order to be long lasting, effective and results in low number of drug resistant cases.
Created2017-01-11
171761-Thumbnail Image.png
Description
The oceanic biological carbon pump is a key component of the global carbon cycle in which dissolved carbon dioxide is taken up by phytoplankton during photosynthesis, a fraction of which then sinks to depth and contributes to oceanic carbon storage. The small-celled phytoplankton (<5 µm) that dominate the phytoplankton community

The oceanic biological carbon pump is a key component of the global carbon cycle in which dissolved carbon dioxide is taken up by phytoplankton during photosynthesis, a fraction of which then sinks to depth and contributes to oceanic carbon storage. The small-celled phytoplankton (<5 µm) that dominate the phytoplankton community in oligotrophic oceans have traditionally been viewed as contributing little to export production due to their small size. However, recent studies have shown that the picocyanobacterium Synechococcus produces transparent exopolymer particles (TEP), the sticky matrix of marine aggregates, and forms abundant microaggregates (5-60 µm), which is enhanced under nutrient limited growth conditions. Whether other small phytoplankton species exude TEP and form microaggregates, and if these are enhanced under growth-limiting conditions remains to be investigated. This study aims to analyze how nutrient limitation affects TEP production and microaggregate formation of species that are found to be associated with sinking particles in the Sargasso Sea. The pico-cyanobacterium Prochlorococcus marinus (0.8 µm), the nano-diatom Minutocellus polymorphus (2 µm), and the pico-prasinophyte Ostreococcus lucimarinus (0.6 µm) were grown in axenic batch culture experiments under nutrient replete and limited conditions. It was hypothesized that phytoplankton subject to nutrient limitation will aggregate more than those under replete conditions due to an increased exudation of TEP and that Minutocellus would produce the most TEP and microaggregates while Prochlorococcus would produce the least TEP and microaggregates of the three phytoplankton groups. As hypothesized, nutrient limitation increased TEP concentration in all three species, however they were only significant in nitrogen-limited treatments of Prochlorococcus as well as nitrogen- and phosphorus-limited treatments of Minutocellus. Formation of microaggregates was significantly enhanced in Minutocellus and Ostreococcus cultures in distinct microaggregate size ranges. Minutocellus produced the most TEP per cell and aggregated at higher volume concentrations compared to Prochlorococcus and Ostreococcus. Surprisingly, Ostreococcus produced more TEP than Prochlorococcus and Minutocellus per unit cell volume. These findings show for the first time how nutrient limited conditions enhance TEP production and microaggregation of Prochlorococcus, Minutocellus, and Ostreococcus, providing a mechanism for their incorporation into larger, sinking particles and contribution to export production in oligotrophic oceans.
ContributorsShurtleff, Catrina (Author) / Neuer, Susanne (Thesis advisor) / Lomas, Michael W. (Committee member) / Garcia-Pichel, Ferran (Committee member) / Arizona State University (Publisher)
Created2022
171775-Thumbnail Image.png
Description
Under current climate conditions northern peatlands mostly act as C sinks; however, changes in climate and environmental conditions, can change the soil carbon decomposition cascade, thus altering the sink status. Here I studied one of the most abundant northern peatland types, poor fen, situated along a climate gradient from tundra

Under current climate conditions northern peatlands mostly act as C sinks; however, changes in climate and environmental conditions, can change the soil carbon decomposition cascade, thus altering the sink status. Here I studied one of the most abundant northern peatland types, poor fen, situated along a climate gradient from tundra (Daring Lake, Canada) to boreal forest (Lutose, Canada) to temperate broadleaf and mixed forest (Bog Lake, MN and Chicago Bog, NY) biomes to assess patterns of microbial abundance across the climate gradient. Principal component regression analysis of the microbial community and environmental variables determined that mean annual temperature (MAT) (r2=0.85), mean annual precipitation (MAP) (r2=0.88), and soil temperature (r2=0.77), were the top significant drivers of microbial community composition (p < 0.001). Niche breadth analysis revealed the relative abundance of Intrasporangiaceae, Methanobacteriaceae and Candidatus Methanoflorentaceae fam. nov. to increase when MAT and MAP decrease. The same analysis showed Spirochaetaceae, Methanosaetaceae and Methanoregulaceae to increase in relative abundance when MAP, soil temperature and MAT increased, respectively. These findings indicated that climate variables were the strongest predictors of microbial community composition and that certain taxa, especially methanogenic families demonstrate distinct patterns across the climate gradient. To evaluate microbial production of methanogenic substrates, I carried out High Resolution-DNA-Stable Isotope Probing (HR-DNA-SIP) to evaluate the active portion of the community’s intermediary ecosystem metabolic processes. HR-DNA-SIP revealed several challenges in efficiency of labelling and statistical identification of responders, however families like Veillonellaceae, Magnetospirillaceae, Acidobacteriaceae 1, were found ubiquitously active in glucose amended incubations. Differences in metabolic byproducts from glucose amendments show distinct patterns in acetate and propionate accumulation across sites. Families like Spirochaetaceae and Sphingomonadaceae were only found to be active in select sites of propionate amended incubations. By-product analysis from propionate incubations indicate that the northernmost sites were acetate-accumulating communities. These results indicate that microbial communities found in poor fen northern peatlands are strongly influenced by climate variables predicted to change under current climate scenarios. I have identified patterns of relative abundance and activity of select microbial taxa, indicating the potential for climate variables to influence the metabolic pathway in which carbon moves through peatland systems.
ContributorsSarno, Analissa Flores (Author) / Cadillo-Quiroz, Hinsby (Thesis advisor) / Garcia-Pichel, Ferran (Committee member) / Krajmalnik-Brown, Rosa (Committee member) / Childers, Daniel (Committee member) / Arizona State University (Publisher)
Created2022
161966-Thumbnail Image.png
Description
The ability to find evidence of life on early Earth and other planets is constrained by the current understanding of biosignatures and our ability to differentiate fossils from abiotic mimics. When organisms transition from the living realm to the fossil record, their morphological and chemical characteristics are modified, usually resulting

The ability to find evidence of life on early Earth and other planets is constrained by the current understanding of biosignatures and our ability to differentiate fossils from abiotic mimics. When organisms transition from the living realm to the fossil record, their morphological and chemical characteristics are modified, usually resulting in the loss of information. These modifications can happen during early and late diagenesis and differ depending on local geochemical properties. These post-depositional modifications need to be understood to better interpret the fossil record. Siliceous hot spring deposits (sinters) are of particular interest for biosignature research as they are early Earth analog environments and targets for investigating the presence of fossil life on Mars. As silica-supersaturated fluids flow from the vent to the distal apron, they precipitate non-crystalline opal-A that fossilizes microbial communities at a range in scales (μm-cm). Therefore, many studies have documented the ties between the active microbial communities and the morphological and chemical biosignatures in hot springs. However, far less attention has been placed on understanding preservation in systems with complex mineralogy or how post-depositional alteration affects the retention of biosignatures. Without this context, it can be challenging to recognize biosignatures in ancient rocks. This dissertation research aims to refine our current understanding of biosignature preservation and retention in sinters. Biosignatures of interest include organic matter, microfossils, and biofabrics. The complex nature of hot springs requires a comprehensive understanding of biosignature preservation that is representative of variable chemistries and post-depositional alterations. For this reason, this dissertation research chapters are field site-based. Chapter 2 investigates biosignature preservation in an unusual spring with mixed opal-A-calcite mineralogy at Lýsuhóll, Iceland. Chapter 3 tracks how silica diagenesis modifies microfossil morphology and associated organic matter at Puchuldiza, Chile. Chapter 4 studies the effects of acid fumarolic overprinting on biosignatures in Gunnuhver, Iceland. To accomplish this, traditional geologic methods (mapping, petrography, X-ray diffraction, bulk elemental analyses) were combined with high-spatial-resolution elemental mapping to better understand diagenetic effects in these systems. Preservation models were developed to predict the types and styles of biosignatures that can be present depending on the depositional and geochemical context. Recommendations are also made for the types of deposits that are most likely to preserve biosignatures.
ContributorsJuarez Rivera, Marisol (Author) / Farmer, Jack D (Thesis advisor) / Hartnett, Hilairy E (Committee member) / Shock, Everett (Committee member) / Garcia-Pichel, Ferran (Committee member) / Trembath-Reichert, Elizabeth (Committee member) / Arizona State University (Publisher)
Created2021
168533-Thumbnail Image.png
Description
Predatory bacteria are a guild of heterotrophs that feed directly on other living bacteria. They belong to several bacterial lineages that evolved this mode of life independently and occur in many microbiomes and environments. Current knowledge of predatory bacteria is based on culture studies and simple detection in natural systems.

Predatory bacteria are a guild of heterotrophs that feed directly on other living bacteria. They belong to several bacterial lineages that evolved this mode of life independently and occur in many microbiomes and environments. Current knowledge of predatory bacteria is based on culture studies and simple detection in natural systems. The ecological consequences of their activity, unlike those of other populational loss factors like viral infection or grazing by protists, are yet to be assessed. During large-scale cultivation of biological soil crusts intended for arid soil rehabilitation, episodes of catastrophic failure were observed in cyanobacterial growth that could be ascribed to the action of an unknown predatory bacterium using bioassays. This predatory bacterium was also present in natural biocrust communities, where it formed clearings (plaques) up to 9 cm in diameter that were visible to the naked eye. Enrichment cultivation and purification by cell-sorting were used to obtain co-cultures of the predator with its cyanobacterial prey, as well as to identify and characterize it genomically, physiologically and ultrastructurally. A Bacteroidetes bacterium, unrelated to any known isolate at the family level, it is endobiotic, non-motile, obligately predatory, displays a complex life cycle and very unusual ultrastructure. Extracellular propagules are small (0.8-1.0 µm) Gram-negative cocci with internal two-membrane-bound compartmentalization. These gain entry to the prey likely using a suite of hydrolytic enzymes, localizing to the cyanobacterial cytoplasm, where growth begins into non-compartmentalized pseudofilaments that undergo secretion of vesicles and simultaneous multiple division to yield new propagules. I formally describe it as Candidatus Cyanoraptor togatus, hereafter Cyanoraptor. Its prey range is restricted to biocrust-forming, filamentous, non-heterocystous, gliding, bundle-making cyanobacteria. Molecular meta-analyses showed its worldwide distribution in biocrusts. Biogeochemical analyses of Cyanoraptor plaques revealed that it causes a complete loss of primary productivity, and significant decreases in other biocrusts properties such as water-retention and dust-trapping capacity. Extensive field surveys in the US Southwest revealed its ubiquity and its dispersal-limited, aggregated spatial distribution and incidence. Overall, its activity reduces biocrust productivity by 10% at the ecosystem scale. My research points to predatory bacteria as a significant, but overlooked, ecological force in shaping soil microbiomes.
ContributorsBethany Rakes, Julie Ann (Author) / Garcia-Pichel, Ferran (Thesis advisor) / Gile, Gillian (Committee member) / Cao, Huansheng (Committee member) / Jacobs, Bertram (Committee member) / Arizona State University (Publisher)
Created2022
168680-Thumbnail Image.png
Description
This study examined perception of K12 schooling systems as experienced by a randomsample of adults in Phoenix, AZ. It explored whether the values purported as key factors in the American K12 schooling system - as presented in academic literature - were compatible with the lives, interests and goals of ‘users’, student-participants.

This study examined perception of K12 schooling systems as experienced by a randomsample of adults in Phoenix, AZ. It explored whether the values purported as key factors in the American K12 schooling system - as presented in academic literature - were compatible with the lives, interests and goals of ‘users’, student-participants. In addition, it offered opportunity for post-K12 student-participants to share their views on the purposes, goals, and outcomes they held to be important. The sample consisted of 139 post-K12 stu- dents/individuals residing in Phoenix, AZ. Mean age of student-participants was 29. Results indicated a mismatch between purported K12 schooling goals and important outcomes embedded in the system and values held by the K12 student-participants. The participants in this research generally perceived K12 schooling as valuable, both to themselves and to society at large, but stressed that the deficiencies they perceived in the system were particular to delivery platforms as they relate to the learning styles of students and belonging. Future life skills and success - in and after K12 schooling - whether related to college or not were also of importance. Results revealed that the initial hypothesis of income, age, and ethnicity as key factors in satisfaction with K12 schooling was not borne-out. Rather it revealed that a sense of belonging and the suitability of learning platforms to the individual learning styles of students were of greatest significance.
ContributorsParker-Anderies, Margaret (Author) / Janssen, Marco (Thesis advisor) / Garcia, David (Committee member) / Mishra, Punya (Committee member) / Arizona State University (Publisher)
Created2022