Matching Items (127)
152626-Thumbnail Image.png
Description
The influence of climate variability and reclaimed wastewater on the water supply necessitates improved understanding of the treatability of trace and bulk organic matter. Dissolved organic matter (DOM) mobilized during extreme weather events and in treated wastewater includes natural organic matter (NOM), contaminants of emerging concern (CECs), and microbial extracellular

The influence of climate variability and reclaimed wastewater on the water supply necessitates improved understanding of the treatability of trace and bulk organic matter. Dissolved organic matter (DOM) mobilized during extreme weather events and in treated wastewater includes natural organic matter (NOM), contaminants of emerging concern (CECs), and microbial extracellular polymeric substances (EPS). The goal of my dissertation was to quantify the impacts of extreme weather events on DOM in surface water and downstream treatment processes, and to improve membrane filtration efficiency and CECs oxidation efficiency during water reclamation with ozone. Surface water quality, air quality and hydrologic flow rate data were used to quantify changes in DOM and turbidity following dust storms, flooding, or runoff from wildfire burn areas in central Arizona. The subsequent impacts to treatment processes and public perception of water quality were also discussed. Findings showed a correlation between dust storm events and change in surface water turbidity (R2=0.6), attenuation of increased DOM through reservoir systems, a 30-40% increase in organic carbon and a 120-600% increase in turbidity following severe flooding, and differing impacts of upland and lowland wildfires. The use of ozone to reduce membrane fouling caused by vesicles (a subcomponent of EPS) and oxidize CECs through increased hydroxyl radical (HO●) production was investigated. An "ozone dose threshold" was observed above which addition of hydrogen peroxide increased HO● production; indicating the presence of ambient promoters in wastewater. Ozonation of CECs in secondary effluent over titanium dioxide or activated carbon did not increase radial production. Vesicles fouled ultrafiltration membranes faster (20 times greater flux decline) than polysaccharides, fatty acids, or NOM. Based upon the estimated carbon distribution of secondary effluent, vesicles could be responsible for 20-60% of fouling during ultrafiltration and may play a vital role in other environmental processes as well. Ozone reduced vesicle-caused membrane fouling that, in conjunction with the presence of ambient promoters, helps to explain why low ozone dosages improve membrane flux during full-scale water reclamation.
ContributorsBarry, Michelle (Author) / Barry, Michelle C (Thesis advisor) / Westerhoff, Paul (Committee member) / Fox, Peter (Committee member) / Halden, Rolf (Committee member) / Hristovski, Kiril (Committee member) / Arizona State University (Publisher)
Created2014
152804-Thumbnail Image.png
Description
Arsenic (As) and chromium (Cr) occur naturally in AZ surface and groundwaters, pose different health impacts, and exhibit different treatment efficacies. Hexavalent chromium (Cr(VI)) has newly recognized human health concerns, and State and Federal agencies are evaluating a low Cr(VI)-specific maximum contaminant level (MCL) for drinking water. Occurrence of Cr

Arsenic (As) and chromium (Cr) occur naturally in AZ surface and groundwaters, pose different health impacts, and exhibit different treatment efficacies. Hexavalent chromium (Cr(VI)) has newly recognized human health concerns, and State and Federal agencies are evaluating a low Cr(VI)-specific maximum contaminant level (MCL) for drinking water. Occurrence of Cr and As in municipal drinking waters and industrial cooling tower waters was quantified by grab samples and compared with sampling results obtained from a new passive sampler developed specifically for Cr(VI). Cr(VI) and As concentrations in groundwater used for cooling tower make-up water concentrations were ~3 ppb and ~4 ppb, respectively, and were concentrated significantly in blowdown water (~20 ppb and ~40 ppb). Based upon pending Cr(VI), As, and other metal regulations, these blowdown waters will need routine monitoring and treatment. Cr(VI) concentrations in a water treatment plant (WTP) raw and finished water samples varied from 0.5 and 2 ppb for grab samples collected every 4 hours for 7 consecutive days using an ISCO sampler. The development of an ion exchange (IX) based passive sampler was validated in the field at the WTP and yielded an average exposure within 1 standard deviation of ISCO sampler grab data. Sampling at both the WTP and cooling towers suggested sources of Cr(III) from treatment chemicals or wood preservatives may exist. Since both facilities use chlorine oxidants, I quantified the apparent (pH=5) second-order rate constant for aqueous chlorine (HOCl/OCl-) with Cr(III) to form Cr(VI) as 0.7 M-1s-1. Under typical conditions (2 ppb Cr(III) ; 2 mg/L Cl2) the half-life for the conversion of Cr(III) to the more toxic form Cr(VI) is 4.7 hours. The occurrence studies in AZ and CA show the Cr(VI) and As treatment of groundwaters will be required to meet stringent Cr(VI) regulations. IX technologies, both strong base anion (SBA) and weak base anion (WBA) resin types were screened (and compared) for Cr removal. The SBA IX process for As removal was optimized by utilizing a reactive iron coagulation and filtration (RCF) process to treat spent IX brine, which was then reused to for SBA resin regeneration.
ContributorsBowen, Alexandra (Author) / Paul, Westerhoff K. (Thesis advisor) / Hristovski, Kiril (Committee member) / Halden, Rolf (Committee member) / Arizona State University (Publisher)
Created2014
152574-Thumbnail Image.png
Description
Extraordinary medical advances have led to significant reductions in the burden of infectious diseases in humans. However, infectious diseases still account for more than 13 million annual deaths. This large burden is partly due to some pathogens having found suitable conditions to emerge and spread in denser and more connected

Extraordinary medical advances have led to significant reductions in the burden of infectious diseases in humans. However, infectious diseases still account for more than 13 million annual deaths. This large burden is partly due to some pathogens having found suitable conditions to emerge and spread in denser and more connected host populations, and others having evolved to escape the pressures imposed by the rampant use of antimicrobials. It is then critical to improve our understanding of how diseases spread in these modern landscapes, characterized by new host population structures and socio-economic environments, as well as containment measures such as the deployment of drugs. Thus, the motivation of this dissertation is two-fold. First, we study, using both data-driven and modeling approaches, the the spread of infectious diseases in urban areas. As a case study, we use confirmed-cases data on sexually transmitted diseases (STDs) in the United States to assess the conduciveness of population size of urban areas and their socio-economic characteristics as predictors of STD incidence. We find that the scaling of STD incidence in cities is superlinear, and that the percent of African-Americans residing in cities largely determines these statistical patterns. Since disparities in access to health care are often exacerbated in urban areas, within this project we also develop two modeling frameworks to study the effect of health care disparities on epidemic outcomes. Discrepant results between the two approaches indicate that knowledge of the shape of the recovery period distribution, not just its mean and variance, is key for assessing the epidemiological impact of inequalities. The second project proposes to study, from a modeling perspective, the spread of drug resistance in human populations featuring vital dynamics, stochasticity and contact structure. We derive effective treatment regimes that minimize both the overall disease burden and the spread of resistance. Additionally, targeted treatment in structured host populations may lead to higher levels of drug resistance, and if drug-resistant strains are compensated, they can spread widely even when the wild-type strain is below its epidemic threshold.
ContributorsPatterson-Lomba, Oscar (Author) / Castillo-Chavez, Carlos (Thesis advisor) / Towers, Sherry (Thesis advisor) / Chowell-Puente, Gerardo (Committee member) / Arizona State University (Publisher)
Created2014
153018-Thumbnail Image.png
Description
Urban scaling analysis has introduced a new scientific paradigm to the study of cities. With it, the notions of size, heterogeneity and structure have taken a leading role. These notions are assumed to be behind the causes for why cities differ from one another, sometimes wildly. However, the mechanisms by

Urban scaling analysis has introduced a new scientific paradigm to the study of cities. With it, the notions of size, heterogeneity and structure have taken a leading role. These notions are assumed to be behind the causes for why cities differ from one another, sometimes wildly. However, the mechanisms by which size, heterogeneity and structure shape the general statistical patterns that describe urban economic output are still unclear. Given the rapid rate of urbanization around the globe, we need precise and formal mathematical understandings of these matters. In this context, I perform in this dissertation probabilistic, distributional and computational explorations of (i) how the broadness, or narrowness, of the distribution of individual productivities within cities determines what and how we measure urban systemic output, (ii) how urban scaling may be expressed as a statistical statement when urban metrics display strong stochasticity, (iii) how the processes of aggregation constrain the variability of total urban output, and (iv) how the structure of urban skills diversification within cities induces a multiplicative process in the production of urban output.
ContributorsGómez-Liévano, Andrés (Author) / Lobo, Jose (Thesis advisor) / Muneepeerakul, Rachata (Thesis advisor) / Bettencourt, Luis M. A. (Committee member) / Chowell-Puente, Gerardo (Committee member) / Arizona State University (Publisher)
Created2014
153743-Thumbnail Image.png
Description
Six high-production-volume neonicotinoids were traced through a municipal wastewater treatment plant (WWTP) and engineered wetland located downstream, in a study motivated by reports on these insecticides posing threats to non-target invertebrate species and potentially playing a role in the global honeybee colony collapse disorder. An array of automated samplers was

Six high-production-volume neonicotinoids were traced through a municipal wastewater treatment plant (WWTP) and engineered wetland located downstream, in a study motivated by reports on these insecticides posing threats to non-target invertebrate species and potentially playing a role in the global honeybee colony collapse disorder. An array of automated samplers was deployed in a five-day monitoring campaign and resultant flow-weighted samples were analyzed by liquid chromatography tandem mass spectrometry (LC-MS/MS) using the isotope dilution method. Concentrations in WWTP influent and effluent were 54.7 ± 2.9 and 48.6 ± 2.7 ng/L for imidacloprid, respectively, and 3.7 ± 0.3 and 1.8 ± 0.1 ng/L for acetamiprid, respectively. A mass balance over the WWTP showed no (p=0.09, CI = 95%) removal of imidacloprid, and 56 ± 6% aqueous removal of acetamiprid. In the constructed wetland downstream, a lack of removal was noted for both imidacloprid (from 54.4 ± 3.4 ng/L to 49.9 ± 14.6 ng/L) and acetamiprid (from 2.00 ± 0.03 ng/L to 2.30 ± 0.21 ng/L). Clothianidin was detected only inconsistently in the WWTP and wetland (>2 to 288 ng/L; 60% detection frequency), whereas thiamethoxam (<10 ng/L), thiacloprid (<2 ng/L), and dinotefuran (<180 ng/L) were not detected at all. Thus, imidacloprid and acetamiprid were identified as recalcitrant sewage constituents (estimated U.S. WWTP discharge of 1920- 4780 kg/y) that persist during conventional wastewater treatment to enter U.S. surface waters at potentially harmful concentrations.
ContributorsSadaria, Akash Mahendra (Author) / Halden, Rolf (Thesis advisor) / Fox, Peter (Committee member) / Popat, Sudeep (Committee member) / Arizona State University (Publisher)
Created2015
154744-Thumbnail Image.png
Description
Energy use within urban building stocks is continuing to increase globally as populations expand and access to electricity improves. This projected increase in demand could require deployment of new generation capacity, but there is potential to offset some of this demand through modification of the buildings themselves. Building

Energy use within urban building stocks is continuing to increase globally as populations expand and access to electricity improves. This projected increase in demand could require deployment of new generation capacity, but there is potential to offset some of this demand through modification of the buildings themselves. Building stocks are quasi-permanent infrastructures which have enduring influence on urban energy consumption, and research is needed to understand: 1) how development patterns constrain energy use decisions and 2) how cities can achieve energy and environmental goals given the constraints of the stock. This requires a thorough evaluation of both the growth of the stock and as well as the spatial distribution of use throughout the city. In this dissertation, a case study in Los Angeles County, California (LAC) is used to quantify urban growth, forecast future energy use under climate change, and to make recommendations for mitigating energy consumption increases. A reproducible methodological framework is included for application to other urban areas.

In LAC, residential electricity demand could increase as much as 55-68% between 2020 and 2060, and building technology lock-in has constricted the options for mitigating energy demand, as major changes to the building stock itself are not possible, as only a small portion of the stock is turned over every year. Aggressive and timely efficiency upgrades to residential appliances and building thermal shells can significantly offset the projected increases, potentially avoiding installation of new generation capacity, but regulations on new construction will likely be ineffectual due to the long residence time of the stock (60+ years and increasing). These findings can be extrapolated to other U.S. cities where the majority of urban expansion has already occurred, such as the older cities on the eastern coast. U.S. population is projected to increase 40% by 2060, with growth occurring in the warmer southern and western regions. In these growing cities, improving new construction buildings can help offset electricity demand increases before the city reaches the lock-in phase.
ContributorsReyna, Janet Lorel (Author) / Chester, Mikhail V (Thesis advisor) / Gurney, Kevin (Committee member) / Reddy, T. Agami (Committee member) / Rey, Sergio (Committee member) / Arizona State University (Publisher)
Created2016
155172-Thumbnail Image.png
Description
The increased number of novel pathogens that potentially threaten the human population has motivated the development of mathematical and computational modeling approaches for forecasting epidemic impact and understanding key environmental characteristics that influence the spread of diseases. Yet, in the case that substantial uncertainty surrounds the transmission process during a

The increased number of novel pathogens that potentially threaten the human population has motivated the development of mathematical and computational modeling approaches for forecasting epidemic impact and understanding key environmental characteristics that influence the spread of diseases. Yet, in the case that substantial uncertainty surrounds the transmission process during a rapidly developing infectious disease outbreak, complex mechanistic models may be too difficult to be calibrated quick enough for policy makers to make informed decisions. Simple phenomenological models that rely on a small number of parameters can provide an initial platform for assessing the epidemic trajectory, estimating the reproduction number and quantifying the disease burden from the early epidemic phase.

Chapter 1 provides background information and motivation for infectious disease forecasting and outlines the rest of the thesis.

In chapter 2, logistic patch models are used to assess and forecast the 2013-2015 West Africa Zaire ebolavirus epidemic. In particular, this chapter is concerned with comparing and contrasting the effects that spatial heterogeneity has on the forecasting performance of the cumulative infected case counts reported during the epidemic.

In chapter 3, two simple phenomenological models inspired from population biology are used to assess the Research and Policy for Infectious Disease Dynamics (RAPIDD) Ebola Challenge; a simulated epidemic that generated 4 infectious disease scenarios. Because of the nature of the synthetically generated data, model predictions are compared to exact epidemiological quantities used in the simulation.

In chapter 4, these models are applied to the 1904 Plague epidemic that occurred in Bombay. This chapter provides evidence that these simple models may be applicable to infectious diseases no matter the disease transmission mechanism.

Chapter 5, uses the patch models from chapter 2 to explore how migration in the 1904 Plague epidemic changes the final epidemic size.

The final chapter is an interdisciplinary project concerning within-host dynamics of cereal yellow dwarf virus-RPV, a plant pathogen from a virus group that infects over 150 grass species. Motivated by environmental nutrient enrichment due to anthropological activities, mathematical models are employed to investigate the relevance of resource competition to pathogen and host dynamics.
ContributorsPell, Bruce (Author) / Kuang, Yang (Thesis advisor) / Chowell-Puente, Gerardo (Committee member) / Nagy, John (Committee member) / Kostelich, Eric (Committee member) / Gardner, Carl (Committee member) / Arizona State University (Publisher)
Created2016
155718-Thumbnail Image.png
Description
This dissertation is focused on environmental releases from U.S. wastewater infrastructure of recently introduced, mass-produced insecticides, namely neonicotinoids as well as fipronil and its major degradates (sulfone, sulfide, amide, and desulfinyl derivatives), jointly known as fiproles. Both groups of compounds recently have caught the attention of regulatory agencies worldwide due

This dissertation is focused on environmental releases from U.S. wastewater infrastructure of recently introduced, mass-produced insecticides, namely neonicotinoids as well as fipronil and its major degradates (sulfone, sulfide, amide, and desulfinyl derivatives), jointly known as fiproles. Both groups of compounds recently have caught the attention of regulatory agencies worldwide due to their toxic effects on pollinators and on aquatic invertebrates at very low, part-per-trillion levels (Chapter 1). Mass balance studies conducted for 13 U.S. wastewater treatment plants (WWTPs) showed ubiquitous occurrence (3-666 ng/L) and persistence of neonicotinoids (Chapter 2). For the years 2001 through 2016, a longitudinal nationwide study was conducted on the occurrence of fiproles, via analysis of sludge as well as raw and treated wastewater samples. Sludge analysis revealed ubiquitous fiprole occurrence since 2001 (0.2-385 µg/kg dry weight) and a significant increase (2.4±0.3-fold; p<0.005) to elevated levels found both in 2006/7 and 2015/6. This study established a marked persistence of fiproles during both wastewater and sludge treatment, while also identifying non-agricultural uses as a major source of fiprole loading to wastewater (Chapter 3). Eight WWTPs were monitored in Northern California to assess pesticide inputs into San Francisco Bay from wastewater discharge. Per-capita-contaminant-loading calculations identified flea and tick control agents for use on pets as a previously underappreciated source term dominating the mass loading of insecticides to WWTPs in sewage and to the Bay in treated wastewater (Chapter 4). A nationwide assessment of fipronil emissions revealed that pet products, while representing only 22±7% of total fipronil usage (2011-2015), accounted for 86±5% of the mass loading to U.S. surface waters (Chapter 5). In summary, the root cause for considerable annual discharges into U.S. surface waters of the neonicotinoid imidacloprid (3,700-5,500 kg/y) and of fipronil related compounds (1,600-2,400 kg/y) is domestic rather than agricultural insecticide use. Reclaimed effluent from U.S. WWTPs contained insecticide levels that exceed toxicity benchmarks for sensitive aquatic invertebrates in 83% of cases for imidacloprid and in 67% of cases for fipronil. Recommendations are provided on how to limit toxic inputs in the future.
ContributorsSadaria, Akash Mahendra (Author) / Halden, Rolf (Thesis advisor) / Fraser, Matthew (Committee member) / Perreault, Francois (Committee member) / Mascaro, Giuseppe (Committee member) / Arizona State University (Publisher)
Created2017
157823-Thumbnail Image.png
Description
Uncertainty is inherent in predictive decision-making, both with respect to forecasting plausible future conditions based on a historic record, and with respect to backcasting likely upstream states from downstream observations. In the first chapter, I evaluated the status of current water resources management policy in the United States (U.S.) with

Uncertainty is inherent in predictive decision-making, both with respect to forecasting plausible future conditions based on a historic record, and with respect to backcasting likely upstream states from downstream observations. In the first chapter, I evaluated the status of current water resources management policy in the United States (U.S.) with respect to its integration of projective uncertainty into state-level flooding, drought, supply and demand, and climate guidance. I found uncertainty largely absent and discussed only qualitatively rather than quantitatively. In the second chapter, I turned to uncertainty in the interpretation of downstream observations as indicators of upstream behaviors in the field of Wastewater-Based Epidemiology (WBE), which has made possible the near real-time, yet anonymous, monitoring of public health via measurements of biomarkers excreted to wastewater. I found globally, seasonality of air and soil temperature causes biomarker degradation to vary up to 13-fold over the course of a year, constituting part of the background processes WBE must address, or detrend, prior to decision-making. To determine whether the seasonal change in degradation rates was introducing previously unaccounted for uncertainty with respect to differences in observed summertime and winter-time populations, I evaluated demographic indicators recorded by the Census Bureau for correlation with their distance from all major wastewater treatment plants across the U.S. The analysis identified statistically significant correlation for household income, education attainment, unemployment, military service, and the absence of health insurance. Finally, the model was applied to a city-wide case study to test whether temperature could explain some of the trends observed in monthly observations of two opiate compounds. Modeling suggests some of the monthly changes were attributed to natural temperature fluctuation rather than to trends in the substances’ consumption, and that uncertainty regarding discharge location can dominate even relative observed differences in opiate detections. In summary, my work has found temperature an important modulator of WBE results, influencing both the type of populations observed and the likelihood of upstream behaviors disproportionally magnified or obscured, particularly for the more labile biomarkers. There exists significant potential for improving the understanding of empirical observations via numerical modeling and the application of spatial analysis tools.
ContributorsHart, Olga (Author) / Halden, Rolf (Thesis advisor) / Mascaro, Giuseppe (Committee member) / Renaut, Rosemary (Committee member) / Nelson, Keith (Committee member) / Arizona State University (Publisher)
Created2019
158549-Thumbnail Image.png
Description
Plastic pollution has become a global threat to ecosystems worldwide, with microplastics now representing contaminants reported to occur in ambient air, fresh water, seawater, soils, fauna and people. Over time, larger macro-plastics are subject to weathering and fragmentation, resulting in smaller particles, termed ‘microplastics’ (measuring < 5 mm in diameter),

Plastic pollution has become a global threat to ecosystems worldwide, with microplastics now representing contaminants reported to occur in ambient air, fresh water, seawater, soils, fauna and people. Over time, larger macro-plastics are subject to weathering and fragmentation, resulting in smaller particles, termed ‘microplastics’ (measuring < 5 mm in diameter), which have been found to pollute virtually every marine and terrestrial ecosystem on the planet. This thesis explored the transfer of plastic pollutants from consumer products into the built water environment and ultimately into global aquatic and terrestrial ecosystems.

A literature review demonstrated that municipal sewage sludge produced by wastewater treatment plants around the world contains detectable quantities of microplastics. Application of sewage sludge on land was shown to represent a mechanism for transfer of microplastics from wastewater into terrestrial environments, with some countries reporting as high as 113 ± 57 microplastic particles per gram of dry sludge.

To address the notable shortcoming of inconsistent reporting practices for microplastic pollution, this thesis introduced a novel, online calculator that converts the number of plastic particles into the unambiguous metric of mass, thereby making global studies on microplastic pollution directly comparable.

This thesis concludes with an investigation of a previously unexplored and more personal source of plastic pollution, namely the disposal of single-use contact lenses and an assessment of the magnitude of this emerging source of environmental pollution. Using an online survey aimed at quantifying trends with the disposal of lenses in the US, it was discovered that 20 ± 0.8% of contact lens wearers flushed their used lenses down the drain, amounting to 44,000 ± 1,700 kg y-1 of lens dry mass discharged into US wastewater.

From the results it is concluded that conventional and medical microplastics represent a significant global source of pollution and a long-term threat to ecosystems around the world. Recommendations are provided on how to limit the entry of medical microplastics into the built water environment to limit damage to ecosystems worldwide.
ContributorsRolsky, Charles (Author) / Halden, Rolf (Thesis advisor) / Green, Matthew (Committee member) / Neuer, Susanne (Committee member) / Polidoro, Beth (Committee member) / Smith, Andrew (Committee member) / Arizona State University (Publisher)
Created2020