Matching Items (205)
150055-Thumbnail Image.png
Description
This dissertation provides a fundamental understanding of the impact of bulk polymer properties on the nanometer length scale modulus. The elastic modulus of amorphous organic thin films is examined using a surface wrinkling technique. Potential correlations between thin film behavior and intrinsic properties such as flexibility and chain length are

This dissertation provides a fundamental understanding of the impact of bulk polymer properties on the nanometer length scale modulus. The elastic modulus of amorphous organic thin films is examined using a surface wrinkling technique. Potential correlations between thin film behavior and intrinsic properties such as flexibility and chain length are explored. Thermal properties, glass transition temperature (Tg) and the coefficient of thermal expansion, are examined along with the moduli of these thin films. It is found that the nanometer length scale behavior of flexible polymers correlates to its bulk Tg and not the polymers intrinsic size. It is also found that decreases in the modulus of ultrathin flexible films is not correlated with the observed Tg decrease in films of the same thickness. Techniques to circumvent reductions from bulk modulus were also demonstrated. However, as chain flexibility is reduced the modulus becomes thickness independent down to 10 nm. Similarly for this series minor reductions in Tg were obtained. To further understand the impact of the intrinsic size and processing conditions; this wrinkling instability was also utilized to determine the modulus of small organic electronic materials at various deposition conditions. Lastly, this wrinkling instability is exploited for development of poly furfuryl alcohol wrinkles. A two-step wrinkling process is developed via an acid catalyzed polymerization of a drop cast solution of furfuryl alcohol and photo acid generator. The ability to control the surface topology and tune the wrinkle wavelength with processing parameters such as substrate temperature and photo acid generator concentration is also demonstrated. Well-ordered linear, circular, and curvilinear patterns are also obtained by selective ultraviolet exposure and polymerization of the furfuryl alcohol film. As a carbon precursor a thorough understanding of this wrinkling instability can have applications in a wide variety of technologies.
ContributorsTorres, Jessica (Author) / Vogt, Bryan D (Thesis advisor) / Stafford, Christopher M (Committee member) / Richert, Ranko (Committee member) / Rege, Kaushal (Committee member) / Dai, Lenore (Committee member) / Arizona State University (Publisher)
Created2011
150025-Thumbnail Image.png
Description
With the increasing focus on developing environmentally benign electronic packages, lead-free solder alloys have received a great deal of attention. Mishandling of packages, during manufacture, assembly, or by the user may cause failure of solder joint. A fundamental understanding of the behavior of lead-free solders under mechanical shock conditions is

With the increasing focus on developing environmentally benign electronic packages, lead-free solder alloys have received a great deal of attention. Mishandling of packages, during manufacture, assembly, or by the user may cause failure of solder joint. A fundamental understanding of the behavior of lead-free solders under mechanical shock conditions is lacking. Reliable experimental and numerical analysis of lead-free solder joints in the intermediate strain rate regime need to be investigated. This dissertation mainly focuses on exploring the mechanical shock behavior of lead-free tin-rich solder alloys via multiscale modeling and numerical simulations. First, the macroscopic stress/strain behaviors of three bulk lead-free tin-rich solders were tested over a range of strain rates from 0.001/s to 30/s. Finite element analysis was conducted to determine appropriate specimen geometry that could reach a homogeneous stress/strain field and a relatively high strain rate. A novel self-consistent true stress correction method is developed to compensate the inaccuracy caused by the triaxial stress state at the post-necking stage. Then the material property of micron-scale intermetallic was examined by micro-compression test. The accuracy of this measure is systematically validated by finite element analysis, and empirical adjustments are provided. Moreover, the interfacial property of the solder/intermetallic interface is investigated, and a continuum traction-separation law of this interface is developed from an atomistic-based cohesive element method. The macroscopic stress/strain relation and microstructural properties are combined together to form a multiscale material behavior via a stochastic approach for both solder and intermetallic. As a result, solder is modeled by porous plasticity with random voids, and intermetallic is characterized as brittle material with random vulnerable region. Thereafter, the porous plasticity fracture of the solders and the brittle fracture of the intermetallics are coupled together in one finite element model. Finally, this study yields a multiscale model to understand and predict the mechanical shock behavior of lead-free tin-rich solder joints. Different fracture patterns are observed for various strain rates and/or intermetallic thicknesses. The predictions have a good agreement with the theory and experiments.
ContributorsFei, Huiyang (Author) / Jiang, Hanqing (Thesis advisor) / Chawla, Nikhilesh (Thesis advisor) / Tasooji, Amaneh (Committee member) / Mobasher, Barzin (Committee member) / Rajan, Subramaniam D. (Committee member) / Arizona State University (Publisher)
Created2011
150007-Thumbnail Image.png
Description
Current economic conditions necessitate the extension of service lives for a variety of aerospace systems. As a result, there is an increased need for structural health management (SHM) systems to increase safety, extend life, reduce maintenance costs, and minimize downtime, lowering life cycle costs for these aging systems. The implementation

Current economic conditions necessitate the extension of service lives for a variety of aerospace systems. As a result, there is an increased need for structural health management (SHM) systems to increase safety, extend life, reduce maintenance costs, and minimize downtime, lowering life cycle costs for these aging systems. The implementation of such a system requires a collaborative research effort in a variety of areas such as novel sensing techniques, robust algorithms for damage interrogation, high fidelity probabilistic progressive damage models, and hybrid residual life estimation models. This dissertation focuses on the sensing and damage estimation aspects of this multidisciplinary topic for application in metallic and composite material systems. The primary means of interrogating a structure in this work is through the use of Lamb wave propagation which works well for the thin structures used in aerospace applications. Piezoelectric transducers (PZTs) were selected for this application since they can be used as both sensors and actuators of guided waves. Placement of these transducers is an important issue in wave based approaches as Lamb waves are sensitive to changes in material properties, geometry, and boundary conditions which may obscure the presence of damage if they are not taken into account during sensor placement. The placement scheme proposed in this dissertation arranges piezoelectric transducers in a pitch-catch mode so the entire structure can be covered using a minimum number of sensors. The stress distribution of the structure is also considered so PZTs are placed in regions where they do not fail before the host structure. In order to process the data from these transducers, advanced signal processing techniques are employed to detect the presence of damage in complex structures. To provide a better estimate of the damage for accurate life estimation, machine learning techniques are used to classify the type of damage in the structure. A data structure analysis approach is used to reduce the amount of data collected and increase computational efficiency. In the case of low velocity impact damage, fiber Bragg grating (FBG) sensors were used with a nonlinear regression tool to reconstruct the loading at the impact site.
ContributorsCoelho, Clyde (Author) / Chattopadhyay, Aditi (Thesis advisor) / Dai, Lenore (Committee member) / Wu, Tong (Committee member) / Das, Santanu (Committee member) / Rajadas, John (Committee member) / Papandreou-Suppappola, Antonia (Committee member) / Arizona State University (Publisher)
Created2011
149996-Thumbnail Image.png
Description
One of the challenges in future semiconductor device design is excessive rise of power dissipation and device temperatures. With the introduction of new geometrically confined device structures like SOI, FinFET, nanowires and continuous incorporation of new materials with poor thermal conductivities in the device active region, the device thermal problem

One of the challenges in future semiconductor device design is excessive rise of power dissipation and device temperatures. With the introduction of new geometrically confined device structures like SOI, FinFET, nanowires and continuous incorporation of new materials with poor thermal conductivities in the device active region, the device thermal problem is expected to become more challenging in coming years. This work examines the degradation in the ON-current due to self-heating effects in 10 nm channel length silicon nanowire transistors. As part of this dissertation, a 3D electrothermal device simulator is developed that self-consistently solves electron Boltzmann transport equation with 3D energy balance equations for both the acoustic and the optical phonons. This device simulator predicts temperature variations and other physical and electrical parameters across the device for different bias and boundary conditions. The simulation results show insignificant current degradation for nanowire self-heating because of pronounced velocity overshoot effect. In addition, this work explores the role of various placement of the source and drain contacts on the magnitude of self-heating effect in nanowire transistors. This work also investigates the simultaneous influence of self-heating and random charge effects on the magnitude of the ON current for both positively and negatively charged single charges. This research suggests that the self-heating effects affect the ON-current in two ways: (1) by lowering the barrier at the source end of the channel, thus allowing more carriers to go through, and (2) via the screening effect of the Coulomb potential. To examine the effect of temperature dependent thermal conductivity of thin silicon films in nanowire transistors, Selberherr's thermal conductivity model is used in the device simulator. The simulations results show larger current degradation because of self-heating due to decreased thermal conductivity . Crystallographic direction dependent thermal conductivity is also included in the device simulations. Larger degradation is observed in the current along the [100] direction when compared to the [110] direction which is in agreement with the values for the thermal conductivity tensor provided by Zlatan Aksamija.
ContributorsHossain, Arif (Author) / Vasileska, Dragica (Thesis advisor) / Ahmed, Shaikh (Committee member) / Bakkaloglu, Bertan (Committee member) / Goodnick, Stephen (Committee member) / Arizona State University (Publisher)
Created2011
149689-Thumbnail Image.png
Description
Ordered mesoporous materials have tunable pore sizes between 2 and 50 nm and are characterized by ordered pore structures and high surface areas (~1000 m2/g). This makes them particularly favorable for a number of membrane applications such as protein separation, polymer extrusion, nanowire fabrication and membrane reactors. These membranes can

Ordered mesoporous materials have tunable pore sizes between 2 and 50 nm and are characterized by ordered pore structures and high surface areas (~1000 m2/g). This makes them particularly favorable for a number of membrane applications such as protein separation, polymer extrusion, nanowire fabrication and membrane reactors. These membranes can be fabricated as top-layers on macroporous supports or as embedded membranes in a dense matrix. The first part of the work deals with the hydrothermal synthesis and water-vapor/oxygen separation properties of supported MCM-48 and a new Al-MCM-48 type membrane for potential use in air conditioning systems. Knudsen-type permeation is observed in these membranes. The combined effect of capillary condensation and the aluminosilicate matrix resulted in the highest separation factor (142) in Al-MCM-48 membranes, with a water vapor permeance of 6×10-8mol/m2Pas. The second part focuses on synthesis of embedded mesoporous silica membranes with helically ordered pores by a novel Counter Diffusion Self-Assembly (CDSA) method. This method is an extension of the interfacial synthesis method for fiber synthesis using tetrabutylorthosilicate (TBOS) and cetyltrimethylammonium bromide (CTAB) as the silica source and surfactant respectively. The initial part of this study determined the effect of TBOS height and humidity on fiber formation. From this study, the range of TBOS heights for best microscopic and macroscopic ordering were established. Next, the CDSA method was used to successfully synthesize membranes, which were characterized to have good support plugging and an ordered pore structure. Factors that influence membrane synthesis and plug microstructure were determined. SEM studies revealed the presence of gaps between the plugs and support pores, which occur due to shrinking of the plug on drying. Development of a novel liquid deposition method to seal these defects constituted the last part of this work. Post sealing, excess silica was removed by etching with hydrofluoric acid. Membrane quality was evaluated at each step using SEM and gas permeation measurements. After surfactant removal by liquid extraction, the membranes exhibited an O2 permeance of 1.65x10-6mol/m2.Pa.s and He/O2 selectivity of 3.30. The successful synthesis of this membrane is an exciting new development in the area of ordered mesoporous membrane technology.
ContributorsSeshadri, Shriya (Author) / Lin, Jerry Y. S. (Thesis advisor) / Dai, Lenore (Committee member) / Rege, Kaushal (Committee member) / Smith, David J. (Committee member) / Vogt, Bryan (Committee member) / Arizona State University (Publisher)
Created2011
149742-Thumbnail Image.png
Description
Temporary bonding-debonding of flexible plastic substrates to rigid carriers may facilitate effective substrate handling by automated tools for manufacture of flexible microelectronics. The primary challenges in implementing practical temporary bond-debond technology originate from the stress that is developed during high temperature processing predominately through thermal-mechanical property mismatches between carrier, adhesive

Temporary bonding-debonding of flexible plastic substrates to rigid carriers may facilitate effective substrate handling by automated tools for manufacture of flexible microelectronics. The primary challenges in implementing practical temporary bond-debond technology originate from the stress that is developed during high temperature processing predominately through thermal-mechanical property mismatches between carrier, adhesive and substrate. These stresses are relaxed through bowing of the bonded system (substrate-adhesive-carrier), which causes wafer handling problems, or through delamination of substrate from rigid carrier. Another challenge inherent to flexible plastic substrates and linked to stress is their dimensional instability, which may manifest itself in irreversible deformation upon heating and cooling cycles. Dimensional stability is critical to ensure precise registration of different layers during photolithography. The global objective of this work is to determine comprehensive experimental characterization and develop underlying fundamental engineering concept that could enable widespread adoption and scale-up of temporary bonding processing protocols for flexible microelectronics manufacturing. A series of carriers with different coefficient of thermal expansion (CTE), modulus and thickness were investigated to correlate the thermo-mechanical properties of carrier with deformation behavior of bonded systems. The observed magnitude of system bow scaled with properties of carriers according to well-established Stoney's equation. In addition, rheology of adhesive impacted the deformation of bonded system. In particular, distortion-bowing behavior correlated directly with the relative loss factor of adhesive and flexible plastic substrate. Higher loss factor of adhesive compared to that of substrate allowed the stress to be relaxed with less bow, but led to significantly greater dimensional distortion. Conversely, lower loss factor of adhesive allowed less distortion but led to larger wafer bow. A finite element model using ANSYS was developed to predict the trend in bow-distortion of bonded systems as a function of the viscoelastic properties of adhesive. Inclusion of the viscoelasticity of flexible plastic substrate itself was critical to achieving good agreement between simulation and experiment. Simulation results showed that there is a limited range within which tuning the rheology of adhesive can control the stress-distortion. Therefore, this model can aid in design of new adhesive formulations compatible with different processing requirements of various flexible microelectronics applications.
ContributorsHaq, Jesmin (Author) / Raupp, Gregory B (Thesis advisor) / Vogt, Bryan D (Thesis advisor) / Dai, Lenore (Committee member) / Loy, Douglas (Committee member) / Li, Jian (Committee member) / Arizona State University (Publisher)
Created2011
150389-Thumbnail Image.png
Description
Radiation-induced gain degradation in bipolar devices is considered to be the primary threat to linear bipolar circuits operating in the space environment. The damage is primarily caused by charged particles trapped in the Earth's magnetosphere, the solar wind, and cosmic rays. This constant radiation exposure leads to early end-of-life expectancies

Radiation-induced gain degradation in bipolar devices is considered to be the primary threat to linear bipolar circuits operating in the space environment. The damage is primarily caused by charged particles trapped in the Earth's magnetosphere, the solar wind, and cosmic rays. This constant radiation exposure leads to early end-of-life expectancies for many electronic parts. Exposure to ionizing radiation increases the density of oxide and interfacial defects in bipolar oxides leading to an increase in base current in bipolar junction transistors. Radiation-induced excess base current is the primary cause of current gain degradation. Analysis of base current response can enable the measurement of defects generated by radiation exposure. In addition to radiation, the space environment is also characterized by extreme temperature fluctuations. Temperature, like radiation, also has a very strong impact on base current. Thus, a technique for separating the effects of radiation from thermal effects is necessary in order to accurately measure radiation-induced damage in space. This thesis focuses on the extraction of radiation damage in lateral PNP bipolar junction transistors and the space environment. It also describes the measurement techniques used and provides a quantitative analysis methodology for separating radiation and thermal effects on the bipolar base current.
ContributorsCampola, Michael J (Author) / Barnaby, Hugh J (Thesis advisor) / Holbert, Keith E. (Committee member) / Vasileska, Dragica (Committee member) / Arizona State University (Publisher)
Created2011
150366-Thumbnail Image.png
Description
Mesoporous materials that possess large surface area, tunable pore size, and ordered structures are attractive features for many applications such as adsorption, protein separation, enzyme encapsulation and drug delivery as these materials can be tailored to host different guest molecules. Films provide a model system to understand how the pore

Mesoporous materials that possess large surface area, tunable pore size, and ordered structures are attractive features for many applications such as adsorption, protein separation, enzyme encapsulation and drug delivery as these materials can be tailored to host different guest molecules. Films provide a model system to understand how the pore orientation impacts the potential for loading and release of selectively sized molecules. This research work aims to develop structure-property relationships to understand how pore size, geometry, and surface hydrophobicity influence the loading and release of drug molecules. In this study, the pore size is systematically varied by incorporating pore-swelling agent of polystyrene oligomers (hPS) to soft templated mesoporous carbon films fabricated by cooperative assembly of poly(styrene-block-ethylene oxide) (SEO) with phenolic resin. To examine the impact of morphology, different compositions of amphiphilic triblock copolymer templates, poly(ethylene oxide)-block-poly(propylene oxide)-block-poly(ethylene oxide) (PEO-PPO-PEO), are used to form two-dimensional hexagonal and cubic mesostructures. Lastly, the carbonization temperature provides a handle to tune the hydrophobicity of the film. These mesoporous films are then utilized to understand the uptake and release of a model drug Mitoxantrone dihydrochloride from nanostructured materials. The largest pore size (6nm) mesoporous carbon based on SEO exhibits the largest uptake (3.5μg/cm2); this is attributed to presence of larger internal volume compared to the other two films. In terms of release, a controlled response is observed for all films with the highest release for the 2nm cubic film (1.45 μg/cm2) after 15 days, but this is only 56 % of the drug loaded. Additionally, the surface hydrophobicity impacts the fraction of drug release with a decrease from 78% to 43%, as the films become more hydrophobic when carbonized at higher temperatures. This work provides a model system to understand how pore morphology, size and chemistry influence the drug loading and release for potential implant applications.
ContributorsLabiano, Alpha (Author) / Vogt, Bryan (Thesis advisor) / Rege, Kaushal (Committee member) / Dai, Lenore (Committee member) / Potta, Thrimoorthy (Committee member) / Arizona State University (Publisher)
Created2011
149862-Thumbnail Image.png
Description
Biological membranes are critical to cell sustainability by selectively permeating polar molecules into the intracellular space and providing protection to the interior organelles. Biomimetic membranes (model cell membranes) are often used to fundamentally study the lipid bilayer backbone structure of the biological membrane. Lipid bilayer membranes are often supported using

Biological membranes are critical to cell sustainability by selectively permeating polar molecules into the intracellular space and providing protection to the interior organelles. Biomimetic membranes (model cell membranes) are often used to fundamentally study the lipid bilayer backbone structure of the biological membrane. Lipid bilayer membranes are often supported using inorganic materials in an effort to improve membrane stability and for application to novel biosensing platforms. Published literature has shown that a variety of dense inorganic materials with various surface properties have been investigated for the study of biomimetic membranes. However, literature does not adequately address the effect of porous materials or supports with varying macroscopic geometries on lipid bilayer membrane behavior. The objective of this dissertation is to present a fundamental study on the synthesis of lipid bilayer membranes supported by novel inorganic supports in an effort to expand the number of available supports for biosensing technology. There are two fundamental areas covered including: (1) synthesis of lipid bilayer membranes on porous inorganic materials and (2) synthesis and characterization of cylindrically supported lipid bilayer membranes. The lipid bilayer membrane formation behavior on various porous supports was studied via direct mass adsorption using a quartz crystal microbalance. Experimental results demonstrate significantly different membrane formation behaviors on the porous inorganic supports. A lipid bilayer membrane structure was formed only on SiO2 based surfaces (dense SiO2 and silicalite, basic conditions) and gamma-alumina (acidic conditions). Vesicle monolayer adsorption was observed on gamma-alumina (basic conditions), and yttria stabilized zirconia (YSZ) of varying roughness. Parameters such as buffer pH, surface chemistry and surface roughness were found to have a significant impact on the vesicle adsorption kinetics. Experimental and modeling work was conducted to study formation and characterization of cylindrically supported lipid bilayer membranes. A novel sensing technique (long-period fiber grating refractometry) was utilized to measure the formation mechanism of lipid bilayer membranes on an optical fiber. It was found that the membrane formation kinetics on the fiber was similar to its planar SiO2 counterpart. Fluorescence measurements verified membrane transport behavior and found that characterization artifacts affected the measured transport behavior.
ContributorsEggen, Carrie (Author) / Lin, Jerry Y.S. (Thesis advisor) / Dai, Lenore (Committee member) / Rege, Kaushal (Committee member) / Thornton, Trevor (Committee member) / Vogt, Bryan (Committee member) / Arizona State University (Publisher)
Created2011
149937-Thumbnail Image.png
Description
There will always be a need for high current/voltage transistors. A transistor that has the ability to be both or either of these things is the silicon metal-silicon field effect transistor (MESFET). An additional perk that silicon MESFET transistors have is the ability to be integrated into the standard silicon

There will always be a need for high current/voltage transistors. A transistor that has the ability to be both or either of these things is the silicon metal-silicon field effect transistor (MESFET). An additional perk that silicon MESFET transistors have is the ability to be integrated into the standard silicon on insulator (SOI) complementary metal oxide semiconductor (CMOS) process flow. This makes a silicon MESFET transistor a very valuable device for use in any standard CMOS circuit that may usually need a separate integrated circuit (IC) in order to switch power on or from a high current/voltage because it allows this function to be performed with a single chip thereby cutting costs. The ability for the MESFET to cost effectively satisfy the needs of this any many other high current/voltage device application markets is what drives the study of MESFET optimization. Silicon MESFETs that are integrated into standard SOI CMOS processes often receive dopings during fabrication that would not ideally be there in a process made exclusively for MESFETs. Since these remnants of SOI CMOS processing effect the operation of a MESFET device, their effect can be seen in the current-voltage characteristics of a measured MESFET device. Device simulations are done and compared to measured silicon MESFET data in order to deduce the cause and effect of many of these SOI CMOS remnants. MESFET devices can be made in both fully depleted (FD) and partially depleted (PD) SOI CMOS technologies. Device simulations are used to do a comparison of FD and PD MESFETs in order to show the advantages and disadvantages of MESFETs fabricated in different technologies. It is shown that PD MESFET have the highest current per area capability. Since the PD MESFET is shown to have the highest current capability, a layout optimization method to further increase the current per area capability of the PD silicon MESFET is presented, derived, and proven to a first order.
ContributorsSochacki, John (Author) / Thornton, Trevor J (Thesis advisor) / Schroder, Dieter (Committee member) / Vasileska, Dragica (Committee member) / Goryll, Michael (Committee member) / Arizona State University (Publisher)
Created2011