Matching Items (63)
154137-Thumbnail Image.png
Description
The purpose of information source detection problem (or called rumor source detection) is to identify the source of information diffusion in networks based on available observations like the states of the nodes and the timestamps at which nodes adopted the information (or called infected). The solution of the problem can

The purpose of information source detection problem (or called rumor source detection) is to identify the source of information diffusion in networks based on available observations like the states of the nodes and the timestamps at which nodes adopted the information (or called infected). The solution of the problem can be used to answer a wide range of important questions in epidemiology, computer network security, etc. This dissertation studies the fundamental theory and the design of efficient and robust algorithms for the information source detection problem.

For tree networks, the maximum a posterior (MAP) estimator of the information source is derived under the independent cascades (IC) model with a complete snapshot and a Short-Fat Tree (SFT) algorithm is proposed for general networks based on the MAP estimator. Furthermore, the following possibility and impossibility results are established on the Erdos-Renyi (ER) random graph: $(i)$ when the infection duration $<\frac{2}{3}t_u,$ SFT identifies the source with probability one asymptotically, where $t_u=\left\lceil\frac{\log n}{\log \mu}\right\rceil+2$ and $\mu$ is the average node degree, $(ii)$ when the infection duration $>t_u,$ the probability of identifying the source approaches zero asymptotically under any algorithm; and $(iii)$ when infection duration $
In practice, other than the nodes' states, side information like partial timestamps may also be available. Such information provides important insights of the diffusion process. To utilize the partial timestamps, the information source detection problem is formulated as a ranking problem on graphs and two ranking algorithms, cost-based ranking (CR) and tree-based ranking (TR), are proposed. Extensive experimental evaluations of synthetic data of different diffusion models and real world data demonstrate the effectiveness and robustness of CR and TR compared with existing algorithms.
ContributorsZhu, Kai (Author) / Ying, Lei (Thesis advisor) / Lai, Ying-Cheng (Committee member) / Liu, Huan (Committee member) / Shakarian, Paulo (Committee member) / Arizona State University (Publisher)
Created2015
155010-Thumbnail Image.png
Description
Conductance fluctuations associated with quantum transport through quantumdot systems are currently understood to depend on the nature of the corresponding classical dynamics, i.e., integrable or chaotic. There are a couple of interesting phenomena about conductance fluctuation and quantum tunneling related to geometrical shapes of graphene systems. Firstly, in graphene quantum-dot

Conductance fluctuations associated with quantum transport through quantumdot systems are currently understood to depend on the nature of the corresponding classical dynamics, i.e., integrable or chaotic. There are a couple of interesting phenomena about conductance fluctuation and quantum tunneling related to geometrical shapes of graphene systems. Firstly, in graphene quantum-dot systems, when a magnetic field is present, as the Fermi energy or the magnetic flux is varied, both regular oscillations and random fluctuations in the conductance can occur, with alternating transitions between the two. Secondly, a scheme based on geometrical rotation of rectangular devices to effectively modulate the conductance fluctuations is presented. Thirdly, when graphene is placed on a substrate of heavy metal, Rashba spin-orbit interaction of substantial strength can occur. In an open system such as a quantum dot, the interaction can induce spin polarization. Finally, a problem using graphene systems with electron-electron interactions described by the Hubbard Hamiltonian in the setting of resonant tunneling is investigated.

Another interesting problem in quantum transport is the effect of disorder or random impurities since it is inevitable in real experiments. At first, for a twodimensional Dirac ring, as the disorder density is systematically increased, the persistent current decreases slowly initially and then plateaus at a finite nonzero value, indicating remarkable robustness of the persistent currents, which cannot be discovered in normal metal and semiconductor rings. In addition, in a Floquet system with a ribbon structure, the conductance can be remarkably enhanced by onsite disorder.

Recent years have witnessed significant interest in nanoscale physical systems, such as semiconductor supperlattices and optomechanical systems, which can exhibit distinct collective dynamical behaviors. Firstly, a system of two optically coupled optomechanical cavities is considered and the phenomenon of synchronization transition associated with quantum entanglement transition is discovered. Another useful issue is nonlinear dynamics in semiconductor superlattices caused by its key potential application lies in generating radiation sources, amplifiers and detectors in the spectral range of terahertz. In such a system, transition to multistability, i.e., the emergence of multistability with chaos as a system parameter passes through a critical point, is found and argued to be abrupt.
ContributorsYing, Lei (Author) / Lai, Ying-Cheng (Thesis advisor) / Vasileska, Dragica (Committee member) / Chen, Tingyong (Committee member) / Yao, Yu (Committee member) / Arizona State University (Publisher)
Created2016
155919-Thumbnail Image.png
Description
This dissertation treats a number of related problems in control and data analysis of complex networks.

First, in existing linear controllability frameworks, the ability to steer a network from any initiate state toward any desired state is measured by the minimum number of driver nodes. However, the associated optimal control energy

This dissertation treats a number of related problems in control and data analysis of complex networks.

First, in existing linear controllability frameworks, the ability to steer a network from any initiate state toward any desired state is measured by the minimum number of driver nodes. However, the associated optimal control energy can become unbearably large, preventing actual control from being realized. Here I develop a physical controllability framework and propose strategies to turn physically uncontrollable networks into physically controllable ones. I also discover that although full control can be guaranteed by the prevailing structural controllability theory, it is necessary to balance the number of driver nodes and control energy to achieve actual control, and my work provides a framework to address this issue.

Second, in spite of recent progresses in linear controllability, controlling nonlinear dynamical networks remains an outstanding problem. Here I develop an experimentally feasible control framework for nonlinear dynamical networks that exhibit multistability. The control objective is to apply parameter perturbation to drive the system from one attractor to another. I introduce the concept of attractor network and formulate a quantifiable framework: a network is more controllable if the attractor network is more strongly connected. I test the control framework using examples from various models and demonstrate the beneficial role of noise in facilitating control.

Third, I analyze large data sets from a diverse online social networking (OSN) systems and find that the growth dynamics of meme popularity exhibit characteristically different behaviors: linear, “S”-shape and exponential growths. Inspired by cell population growth model in microbial ecology, I construct a base growth model for meme popularity in OSNs. Then I incorporate human interest dynamics into the base model and propose a hybrid model which contains a small number of free parameters. The model successfully predicts the various distinct meme growth dynamics.

At last, I propose a nonlinear dynamics model to characterize the controlling of WNT signaling pathway in the differentiation of neural progenitor cells. The model is able to predict experiment results and shed light on the understanding of WNT regulation mechanisms.
ContributorsWang, Lezhi (Author) / Lai, Ying-Cheng (Thesis advisor) / Wang, Xiao (Thesis advisor) / Papandreoou-Suppappola, Antonia (Committee member) / Brafman, David (Committee member) / Arizona State University (Publisher)
Created2017
156107-Thumbnail Image.png
Description
Online social media is popular due to its real-time nature, extensive connectivity and a large user base. This motivates users to employ social media for seeking information by reaching out to their large number of social connections. Information seeking can manifest in the form of requests for personal and time-critical

Online social media is popular due to its real-time nature, extensive connectivity and a large user base. This motivates users to employ social media for seeking information by reaching out to their large number of social connections. Information seeking can manifest in the form of requests for personal and time-critical information or gathering perspectives on important issues. Social media platforms are not designed for resource seeking and experience large volumes of messages, leading to requests not being fulfilled satisfactorily. Designing frameworks to facilitate efficient information seeking in social media will help users to obtain appropriate assistance for their needs

and help platforms to increase user satisfaction.

Several challenges exist in the way of facilitating information seeking in social media. First, the characteristics affecting the user’s response time for a question are not known, making it hard to identify prompt responders. Second, the social context in which the user has asked the question has to be determined to find personalized responders. Third, users employ rhetorical requests, which are statements having the

syntax of questions, and systems assisting information seeking might be hindered from focusing on genuine questions. Fouth, social media advocates of political campaigns employ nuanced strategies to prevent users from obtaining balanced perspectives on

issues of public importance.

Sociological and linguistic studies on user behavior while making or responding to information seeking requests provides concepts drawing from which we can address these challenges. We propose methods to estimate the response time of the user for a given question to identify prompt responders. We compute the question specific social context an asker shares with his social connections to identify personalized responders. We draw from theories of political mobilization to model the behaviors arising from the strategies of people trying to skew perspectives. We identify rhetorical questions by modeling user motivations to post them.
ContributorsRanganath, Suhas (Author) / Liu, Huan (Thesis advisor) / Lai, Ying-Cheng (Thesis advisor) / Tong, Hanghang (Committee member) / Vaculin, Roman (Committee member) / Arizona State University (Publisher)
Created2017
156457-Thumbnail Image.png
Description
Resilience is emerging as the preferred way to improve the protection of infrastructure systems beyond established risk management practices. Massive damages experienced during tragedies like Hurricane Katrina showed that risk analysis is incapable to prevent unforeseen infrastructure failures and shifted expert focus towards resilience to absorb and recover from adverse

Resilience is emerging as the preferred way to improve the protection of infrastructure systems beyond established risk management practices. Massive damages experienced during tragedies like Hurricane Katrina showed that risk analysis is incapable to prevent unforeseen infrastructure failures and shifted expert focus towards resilience to absorb and recover from adverse events. Recent, exponential growth in research is now producing consensus on how to think about infrastructure resilience centered on definitions and models from influential organizations like the US National Academy of Sciences. Despite widespread efforts, massive infrastructure failures in 2017 demonstrate that resilience is still not working, raising the question: Are the ways people think about resilience producing resilient infrastructure systems?



This dissertation argues that established thinking harbors misconceptions about infrastructure systems that diminish attempts to improve their resilience. Widespread efforts based on the current canon focus on improving data analytics, establishing resilience goals, reducing failure probabilities, and measuring cascading losses. Unfortunately, none of these pursuits change the resilience of an infrastructure system, because none of them result in knowledge about how data is used, goals are set, or failures occur. Through the examination of each misconception, this dissertation results in practical, new approaches for infrastructure systems to respond to unforeseen failures via sensing, adapting, and anticipating processes. Specifically, infrastructure resilience is improved by sensing when data analytics include the modeler-in-the-loop, adapting to stress contexts by switching between multiple resilience strategies, and anticipating crisis coordination activities prior to experiencing a failure.

Overall, results demonstrate that current resilience thinking needs to change because it does not differentiate resilience from risk. The majority of research thinks resilience is a property that a system has, like a noun, when resilience is really an action a system does, like a verb. Treating resilience as a noun only strengthens commitment to risk-based practices that do not protect infrastructure from unknown events. Instead, switching to thinking about resilience as a verb overcomes prevalent misconceptions about data, goals, systems, and failures, and may bring a necessary, radical change to the way infrastructure is protected in the future.
ContributorsEisenberg, Daniel Alexander (Author) / Seager, Thomas P. (Thesis advisor) / Park, Jeryang (Thesis advisor) / Alderson, David L. (Committee member) / Lai, Ying-Cheng (Committee member) / Arizona State University (Publisher)
Created2018
155476-Thumbnail Image.png
Description
This dissertation aims to study and understand the effect of nonlinear dynamics and quantum chaos in graphene, optomechanics, photonics and spintronics systems.

First, in graphene quantum dot systems, conductance fluctuations are investigated from the respects of Fano resonances and quantum chaos. The conventional semi-classical theory of quantum chaotic scattering used in

This dissertation aims to study and understand the effect of nonlinear dynamics and quantum chaos in graphene, optomechanics, photonics and spintronics systems.

First, in graphene quantum dot systems, conductance fluctuations are investigated from the respects of Fano resonances and quantum chaos. The conventional semi-classical theory of quantum chaotic scattering used in this field depends on an invariant classical phase-space structure. I show that for systems without an invariant classical phase-space structure, the quantum pointer states can still be used to explain the conductance fluctuations. Another finding is that the chaotic geometry is demonstrated to have similar effects as the disorders in transportations.

Second, in optomechanics systems, I find rich nonlinear dynamics. Using the semi-classical Langevin equations, I demonstrate a quasi-periodic motion is favorable for the quantum entanglement between the optical mode and mechanical mode. Then I use the quantum trajectory theory to provide a new resolution for the breakdown of the classical-quantum correspondences in the chaotic regions.

Third, I investigate the analogs of the electrical band structures and effects in the non-electrical systems. In the photonic systems, I use an array of waveguides to simulate the transport of the massive relativistic particle in a non-Hermitian scenario. A new form of Zitterbewegung is discovered as well as its analytical explanation. In mechanical systems, I use springs and mass points systems to achieve a three band degenerate band structure with a new pair of spatially separated edge states in the Dice lattice. A new semi-metal phase with the intrinsic valley-Hall effect is found.

At last, I investigate the nonlinear dynamics in the spintronics systems, in which the topological insulator couples with a magnetization. Rich nonlinear dynamics are discovered in this systems, especially the multi-stability states.
ContributorsWang, Guanglei (Author) / Lai, Ying-Cheng (Thesis advisor) / Vasileska, Dragica (Committee member) / Ning, Cun-Zheng (Committee member) / Zhao, Yuji (Committee member) / Arizona State University (Publisher)
Created2017
155277-Thumbnail Image.png
Description
This dissertation aims to study and understand relevant issues related to the electronic, spin and valley transport in two-dimensional Dirac systems for different given physical settings. In summary, four key findings are achieved.

First, studying persistent currents in confined chaotic Dirac fermion systems with a ring geometry and an applied Aharonov-Bohm

This dissertation aims to study and understand relevant issues related to the electronic, spin and valley transport in two-dimensional Dirac systems for different given physical settings. In summary, four key findings are achieved.

First, studying persistent currents in confined chaotic Dirac fermion systems with a ring geometry and an applied Aharonov-Bohm flux, unusual whispering-gallery modes with edge-dependent currents and spin polarization are identified. They can survive for highly asymmetric rings that host fully developed classical chaos. By sustaining robust persistent currents, these modes can be utilized to form a robust relativistic quantum two-level system.

Second, the quantized topological edge states in confined massive Dirac fermion systems exhibiting a remarkable reverse Stark effect in response to an applied electric field, and an electrically or optically controllable spin switching behavior are uncovered.

Third, novel wave scattering and transport in Dirac-like pseudospin-1 systems are reported. (a), for small scatterer size, a surprising revival resonant scattering with a peculiar boundary trapping by forming unusual vortices is uncovered. Intriguingly, it can persist in arbitrarily weak scatterer strength regime, which underlies a superscattering behavior beyond the conventional scenario. (b), for larger size, a perfect caustic phenomenon arises as a manifestation of the super-Klein tunneling effect. (c), in the far-field, an unexpected isotropic transport emerges at low energies.

Fourth, a geometric valley Hall effect (gVHE) originated from fractional singular Berry flux is revealed. It is shown that gVHE possesses a nonlinear dependence on the Berry flux with asymmetrical resonance features and can be considerably enhanced by electrically controllable resonant valley skew scattering. With the gVHE, efficient valley filtering can arise and these phenomena are robust against thermal fluctuations and disorder averaging.
ContributorsXu, Hongya (Author) / Lai, Ying-Cheng (Thesis advisor) / Bliss, Daniel (Committee member) / Yu, Hongbin (Committee member) / Chen, Tingyong (Committee member) / Arizona State University (Publisher)
Created2017
158202-Thumbnail Image.png
Description
Complex dynamical systems are the kind of systems with many interacting components that usually have nonlinear dynamics. Those systems exist in a wide range of disciplines, such as physical, biological, and social fields. Those systems, due to a large amount of interacting components, tend to possess very high dimensionality. Additionally,

Complex dynamical systems are the kind of systems with many interacting components that usually have nonlinear dynamics. Those systems exist in a wide range of disciplines, such as physical, biological, and social fields. Those systems, due to a large amount of interacting components, tend to possess very high dimensionality. Additionally, due to the intrinsic nonlinear dynamics, they have tremendous rich system behavior, such as bifurcation, synchronization, chaos, solitons. To develop methods to predict and control those systems has always been a challenge and an active research area.

My research mainly concentrates on predicting and controlling tipping points (saddle-node bifurcation) in complex ecological systems, comparing linear and nonlinear control methods in complex dynamical systems. Moreover, I use advanced artificial neural networks to predict chaotic spatiotemporal dynamical systems. Complex networked systems can exhibit a tipping point (a “point of no return”) at which a total collapse occurs. Using complex mutualistic networks in ecology as a prototype class of systems, I carry out a dimension reduction process to arrive at an effective two-dimensional (2D) system with the two dynamical variables corresponding to the average pollinator and plant abundances, respectively. I demonstrate that, using 59 empirical mutualistic networks extracted from real data, our 2D model can accurately predict the occurrence of a tipping point even in the presence of stochastic disturbances. I also develop an ecologically feasible strategy to manage/control the tipping point by maintaining the abundance of a particular pollinator species at a constant level, which essentially removes the hysteresis associated with tipping points.

Besides, I also find that the nodal importance ranking for nonlinear and linear control exhibits opposite trends: for the former, large degree nodes are more important but for the latter, the importance scale is tilted towards the small-degree nodes, suggesting strongly irrelevance of linear controllability to these systems. Focusing on a class of recurrent neural networks - reservoir computing systems that have recently been exploited for model-free prediction of nonlinear dynamical systems, I uncover a surprising phenomenon: the emergence of an interval in the spectral radius of the neural network in which the prediction error is minimized.
ContributorsJiang, Junjie (Author) / Lai, Ying-Cheng (Thesis advisor) / Papandreou-Suppappola, Antonia (Committee member) / Wang, Xiao (Committee member) / Zhang, Yanchao (Committee member) / Arizona State University (Publisher)
Created2020
161797-Thumbnail Image.png
Description
This dissertation aims to study the electron and spin transport, scattering in two dimensional pseudospin-1 lattice systems, hybrid systems of topological insulator and magnetic insulators, and molecule chain systems. For pseudospin-1 systems, the energy band consists of a pair of Dirac cones and a flat band through the connecting point

This dissertation aims to study the electron and spin transport, scattering in two dimensional pseudospin-1 lattice systems, hybrid systems of topological insulator and magnetic insulators, and molecule chain systems. For pseudospin-1 systems, the energy band consists of a pair of Dirac cones and a flat band through the connecting point of the cones. First, contrary to the conditional wisdom that flatband can localize electrons, I find that in a non-equilibrium situation where a constant electric field is suddenly switched on, the flat band can enhance the resulting current in both the linear and nonlinear response regimes compared to spin-1/2 system. Second, in the setup of massive pseudospin-1 electron scattering over a gate potential scatterer, I discover the large resonant skew scattering called super skew scattering, which does not arise in the corresponding spin-1/2 system and massless pseudospin-1 system. Third, by applying an appropriate gate voltage to generate a cavity in an alpha-T3 lattice, I find the exponential decay of the quasiparticles from a chaotic cavity, with a one-to-one correspondence between the exponential decay rate and the Berry phase for the entire family of alpha-T3 materials. Based on the hybrid system of a ferromagnetic insulator on top of a topological insulator, I first investigate the magnetization dynamics of a pair of ferromagnetic insulators deposited on the surface of a topological insulator. The spin polarized current on the surface of topological insulator can affect the magnetization of the two ferromagnetic insulators through proximity effect, which in turn modulates the electron transport, giving rise to the robust phase locking between the two magnetization dynamics. Second, by putting a skyrmion structure on top of a topological insulator, I find robust electron skew scattering against skyrmion structure even with deformation, due to the emergence of resonant modes. The chirality of molecule can lead to spin polarized transport due to the spin orbit interaction. I investigate spin transport through a chiral polyacetylene molecule and uncover the emergence of spin Fano resonances as a manifestation of the chiral induced spin selectivity effect.
ContributorsWang, Chengzhen (Author) / Lai, Ying-Cheng (Thesis advisor) / Yu, Hongbin (Committee member) / Wang, Chao (Committee member) / Zhao, Yuji (Committee member) / Arizona State University (Publisher)
Created2021
129561-Thumbnail Image.png
Description

Extreme events, a type of collective behavior in complex networked dynamical systems, often can have catastrophic consequences. To develop effective strategies to control extreme events is of fundamental importance and practical interest. Utilizing transportation dynamics on complex networks as a prototypical setting, we find that making the network “mobile” can

Extreme events, a type of collective behavior in complex networked dynamical systems, often can have catastrophic consequences. To develop effective strategies to control extreme events is of fundamental importance and practical interest. Utilizing transportation dynamics on complex networks as a prototypical setting, we find that making the network “mobile” can effectively suppress extreme events. A striking, resonance-like phenomenon is uncovered, where an optimal degree of mobility exists for which the probability of extreme events is minimized. We derive an analytic theory to understand the mechanism of control at a detailed and quantitative level, and validate the theory numerically. Implications of our finding to current areas such as cybersecurity are discussed.

ContributorsChen, Yu-Zhong (Author) / Huang, Zi-Gang (Author) / Lai, Ying-Cheng (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2014-08-18