Matching Items (152)
Description
Laboratory automation systems have seen a lot of technological advances in recent times. As a result, the software that is written for them are becoming increasingly sophisticated. Existing software architectures and standards are targeted to a wider domain of software development and need to be customized in order to use

Laboratory automation systems have seen a lot of technological advances in recent times. As a result, the software that is written for them are becoming increasingly sophisticated. Existing software architectures and standards are targeted to a wider domain of software development and need to be customized in order to use them for developing software for laboratory automation systems. This thesis proposes an architecture that is based on existing software architectural paradigms and is specifically tailored to developing software for a laboratory automation system. The architecture is based on fairly autonomous software components that can be distributed across multiple computers. The components in the architecture make use of asynchronous communication methodologies that are facilitated by passing messages between one another. The architecture can be used to develop software that is distributed, responsive and thread-safe. The thesis also proposes a framework that has been developed to implement the ideas proposed by the architecture. The framework is used to develop software that is scalable, distributed, responsive and thread-safe. The framework currently has components to control very commonly used laboratory automation devices such as mechanical stages, cameras, and also to do common laboratory automation functionalities such as imaging.
ContributorsKuppuswamy, Venkataramanan (Author) / Meldrum, Deirdre (Thesis advisor) / Collofello, James (Thesis advisor) / Sarjoughian, Hessam S. (Committee member) / Johnson, Roger (Committee member) / Arizona State University (Publisher)
Created2012
151177-Thumbnail Image.png
Description
Single cell analysis has become increasingly important in understanding disease onset, progression, treatment and prognosis, especially when applied to cancer where cellular responses are highly heterogeneous. Through the advent of single cell computerized tomography (Cell-CT), researchers and clinicians now have the ability to obtain high resolution three-dimensional (3D) reconstructions of

Single cell analysis has become increasingly important in understanding disease onset, progression, treatment and prognosis, especially when applied to cancer where cellular responses are highly heterogeneous. Through the advent of single cell computerized tomography (Cell-CT), researchers and clinicians now have the ability to obtain high resolution three-dimensional (3D) reconstructions of single cells. Yet to date, no live-cell compatible version of the technology exists. In this thesis, a microfluidic chip with the ability to rotate live single cells in hydrodynamic microvortices about an axis parallel to the optical focal plane has been demonstrated. The chip utilizes a novel 3D microchamber design arranged beneath a main channel creating flow detachment into the chamber, producing recirculating flow conditions. Single cells are flowed through the main channel, held in the center of the microvortex by an optical trap, and rotated by the forces induced by the recirculating fluid flow. Computational fluid dynamics (CFD) was employed to optimize the geometry of the microchamber. Two methods for the fabrication of the 3D microchamber were devised: anisotropic etching of silicon and backside diffuser photolithography (BDPL). First, the optimization of the silicon etching conditions was demonstrated through design of experiment (DOE). In addition, a non-conventional method of soft-lithography was demonstrated which incorporates the use of two positive molds, one of the main channel and the other of the microchambers, compressed together during replication to produce a single ultra-thin (<200 µm) negative used for device assembly. Second, methods for using thick negative photoresists such as SU-8 with BDPL have been developed which include a new simple and effective method for promoting the adhesion of SU-8 to glass. An assembly method that bonds two individual ultra-thin (<100 µm) replications of the channel and the microfeatures has also been demonstrated. Finally, a pressure driven pumping system with nanoliter per minute flow rate regulation, sub-second response times, and < 3% flow variability has been designed and characterized. The fabrication and assembly of this device is inexpensive and utilizes simple variants of conventional microfluidic fabrication techniques, making it easily accessible to the single cell analysis community.
ContributorsMyers, Jakrey R (Author) / Meldrum, Deirdre (Thesis advisor) / Johnson, Roger (Committee member) / Frakes, David (Committee member) / Arizona State University (Publisher)
Created2012
136100-Thumbnail Image.png
Description
The purpose of this study is to first investigate the role of political socialization on young men and women and what motivates them to become politically active and make the ultimate decision to run for elected office. These effects include parental attitudes, exposure to political shows and news sources, participation

The purpose of this study is to first investigate the role of political socialization on young men and women and what motivates them to become politically active and make the ultimate decision to run for elected office. These effects include parental attitudes, exposure to political shows and news sources, participation in voluntary organizations, and overall community involvement. After understanding these direct and indirect effects of political socialization, I can attempt to explain the causes for the gender gap in political ambition \u2014 meaning that significantly more men are running for elected office compared to women.
ContributorsOsgood, Shannon Marie (Author) / Woodall, Gina (Thesis director) / Herrera, Richard (Committee member) / Barrett, The Honors College (Contributor) / College of Public Service and Community Solutions (Contributor) / School of Public Affairs (Contributor) / School of Politics and Global Studies (Contributor)
Created2015-05
136151-Thumbnail Image.png
Description
The Undoing Project is an ongoing educational feminist YouTube channel that serves as an introduction to feminism and feminist theory. The objective for this project is to present feminist theory and feminist ideology in an accessible and entertaining way. Through this project I sought to accomplish three goals: to challenge

The Undoing Project is an ongoing educational feminist YouTube channel that serves as an introduction to feminism and feminist theory. The objective for this project is to present feminist theory and feminist ideology in an accessible and entertaining way. Through this project I sought to accomplish three goals: to challenge the negative image of feminism, bridge the gap between the language of academia and the public, and to acknowledge and unlearn ingrained prejudices. The videos focus on theory, history, legislation, current events, and pop culture. The initial project consists of ten videos addressing the feminist wave models, a brief history of the feminist movement, and discussions of concepts like hegemony, intersectionality, masculinity, femininity, and race.
ContributorsBuchholtz, Kaylee Marie (Author) / Brian, Jennifer (Thesis director) / Grzanka, Patrick (Committee member) / Brouwer, Dan (Committee member) / Barrett, The Honors College (Contributor) / College of Public Service and Community Solutions (Contributor) / School of Social Transformation (Contributor) / Department of English (Contributor)
Created2015-05
136329-Thumbnail Image.png
Description
Lean and Green construction methodologies are prevalent in today's construction industry. Green construction implementation in buildings has progressed quickly due to the popularity and development of building rating systems, such as LEED, Green Globes, and the Living Building Challenge. Similarly, lean construction has become more popular as this philosophy often

Lean and Green construction methodologies are prevalent in today's construction industry. Green construction implementation in buildings has progressed quickly due to the popularity and development of building rating systems, such as LEED, Green Globes, and the Living Building Challenge. Similarly, lean construction has become more popular as this philosophy often leads to efficient construction and improved owner satisfaction. Green construction is defined as using sustainable materials in the construction process to eliminate environmental degradation and ensure that material and equipment use aligns with the design intent and promotes efficient building performance. Lean construction is defined as a set of operational/systematic processes that reduce waste and eliminates defects in the project process throughout its lifecycle. This paper describes the implementation of Lean and Green construction processes to determine the trends that each methodology contributes to a project as well as how these methodologies synergize. The authors identified common elements of each methodology through semi-structured interviews with several construction industry professionals who had extensive experience with lean and green construction. Interviewees report lean and green construction philosophies are different "flavors" of the industry; however, interviewees also state if implemented together, these processes often result in a high-performance building.
ContributorsMaris, Kelsey Lynn (Co-author) / Parrish, Kristen (Co-author, Thesis director) / Olson, Patricia (Committee member) / Barrett, The Honors College (Contributor) / School of Sustainability (Contributor) / Del E. Webb Construction (Contributor)
Created2015-05
135900-Thumbnail Image.png
Description
As the demand for natural resources increases with population growth, importance has been placed on environmental issues due to increasing pressure on land, water, air, and raw materials. In order to sustain the environment and natural resources, sustainable engineering and earth systems engineering and management (ESEM) is vital for future

As the demand for natural resources increases with population growth, importance has been placed on environmental issues due to increasing pressure on land, water, air, and raw materials. In order to sustain the environment and natural resources, sustainable engineering and earth systems engineering and management (ESEM) is vital for future populations. The Aral Sea and the Florida Everglades are both regions that are heavily impacted by human design decisions. Comparing and analyzing the implications and outcomes of these human design decisions allows conclusions to be made regarding how earth systems engineering and management can be best accomplished. The Aral Sea, located in central Asia between Kazakhstan and Uzbekistan, is a case study of an ecosystem that has collapsed under the pressure of agricultural expansion. This has caused extensive economic, health, agricultural, and environmental impacts. The Everglades in southern Florida is a case study where the ecosystem has evolved from its original state, rather than collapsed, due to human settlement and water resource demand. In order to determine effective sustainable engineering approaches, the case studies will be evaluated using ESEM principles. These principles are used as guidance in executing better practice of sustainable engineering. When comparing the two case studies, it appears that the Everglades is an adequate representation of effective ESEM approaches, while the Aral Sea is not reflective of effective approaches. When practicing ESEM, it is critical that the principles be applied as a whole rather than individually. While the ESEM principles do not guarantee success, they offer an effective guide to dealing with the complexity and uncertainty in many of today's systems.
ContributorsRidley, Brooke Nicole (Author) / Allenby, Brad (Thesis director) / Parrish, Kristen (Committee member) / Civil, Environmental and Sustainable Engineering Programs (Contributor) / Barrett, The Honors College (Contributor)
Created2015-12
135691-Thumbnail Image.png
Description
Previous research has found improvements in motor and cognitive measures following Assisted Cycle Therapy (AC) in adolescence with Down syndrome (DS). Our study investigated whether we would find improvements in older adults with DS on measures of leisure physical activity (GLTEQ) and sleep, which are early indicators of Alzheimer's disease

Previous research has found improvements in motor and cognitive measures following Assisted Cycle Therapy (AC) in adolescence with Down syndrome (DS). Our study investigated whether we would find improvements in older adults with DS on measures of leisure physical activity (GLTEQ) and sleep, which are early indicators of Alzheimer's disease (AD) in persons with Down syndrome. This study consisted of eight participants with Down syndrome between 31 and 51 years old that cycled for 30 minutes 3 x/week for eight weeks either at their voluntary cycling rate (VC) or approximately 35% faster with the help of a mechanical motor (AC). We predicted that, based on pilot data (Gomez, 2015), GLTEQ would either maintain or improve after AC, but would decrease after VC and would stay the same after NC. We predicted that the sleep score may improve after both VC or AC or it may improve more after VC than AC based on pilot data related to leisure activity. Our results were consistent with our prediction that GLTEQ will either maintain or improve after AC but will decrease after VC. Our results were not consistent with our prediction that sleep may improve after both VC or AC or it may improve more after VC than AC, possibly because we did not pre-screen for sleep disorders. Future research should focus on recruiting more participants and using both objective and subjective measures of sleep and physical activity to improve the efficacy of the study.
ContributorsParker, Lucas Maury (Author) / Ringenbach, Shannon (Thesis director) / Buman, Matthew (Committee member) / Holzapfel, Simon (Committee member) / School of Social and Behavioral Sciences (Contributor) / School of Nutrition and Health Promotion (Contributor) / College of Public Service and Community Solutions (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
136656-Thumbnail Image.png
Description
The objective for Under the Camper Shell was to build a prototype of a full living environment within the confines of a pickup truck bed and camper shell. The total volume available to work with is approximately 85ft3. This full living environment entails functioning systems for essential modern living, providing

The objective for Under the Camper Shell was to build a prototype of a full living environment within the confines of a pickup truck bed and camper shell. The total volume available to work with is approximately 85ft3. This full living environment entails functioning systems for essential modern living, providing shelter and spaces for cooking, sleeping, eating, and sanitation. The project proved to be very challenging from the start. First, the livable space is extremely small, being only tall enough for one to sit up straight. The truck and camper shell were both borrowed items, so no modifications were allowed for either, e.g. drilling holes for mounting. The idea was to create a system that could be easily removed, transforming it from a camper to a utility truck. The systems developed for the living environment would be modular and transformative so to accommodate for different necessities when packing. The goal was to create a low-water system with sustainability in mind. Insulating the space was the largest challenge and the most rewarding, using body heat to warm the space and insulate from the elements. Comfort systems were made of high density foam cushions in sections to allow folding and stacking for different functions (sleeping, lounging, and sitting). Sanitation is necessary for healthy living and regular human function. A composting toilet was used for the design, lending to low-water usage and is sustainable over time. Saw dust would be necessary for its function, but upon composting, the unit will generate sufficient amounts of heat to act as a space heater. Showering serves the functions of exfoliation and ridding of bacteria, both of which bath wipes can accomplish, limiting massive volumes of water storage and waste. Storage systems were also designed for modularity. Hooks were installed the length of the bed for hanging or securing items as necessary. Some are available for hanging bags. A cabinetry rail also runs the length of the bed to allow movement of hard storage to accommodate different scenarios. The cooking method is called "sous-vide", a method of cooking food in air-tight bags submerged in hot water. The water is reusable for cooking and no dishes are necessary for serving. Overall, the prototype fulfilled its function as a full living environment with few improvements necessary for future use.
ContributorsLimsirichai, Pimwadee (Author) / Foy, Joseph (Thesis director) / Parrish, Kristen (Committee member) / Barrett, The Honors College (Contributor) / Materials Science and Engineering Program (Contributor) / School of Sustainability (Contributor)
Created2014-12
137154-Thumbnail Image.png
Description
Many student engagement studies take a holistic view of the student experience at a university setting, which includes factors both inside and outside of the classroom. However, most engagement improvements focus on activities outside of the classroom. Some research regarding improving teaching styles and activities shows an impact on engagement,

Many student engagement studies take a holistic view of the student experience at a university setting, which includes factors both inside and outside of the classroom. However, most engagement improvements focus on activities outside of the classroom. Some research regarding improving teaching styles and activities shows an impact on engagement, but little research has investigated the impact of the built environment on student engagement. This paper explores the definition of student engagement, what environmental variables affect building occupant performance, and specifically addresses how environmental variables can impact student engagement. The authors provide a review of literature discussing these variables as well as propose a method for quantifying the impact of the built environment on students based on results of a preliminary study. Evidence of a relationship between human comfort and student engagement can provide an argument for how thoughtful building designs can improve student success and engineering education. It can further extend to industry settings where green building design can lower operating costs and improve worker satisfaction and productivity.
ContributorsDuggan, Kathleen Rose (Author) / Parrish, Kristen (Thesis director) / Khanna, Vikas (Committee member) / Beckert, Kimberly (Committee member) / Industrial, Systems (Contributor) / Barrett, The Honors College (Contributor) / School of Mathematical and Statistical Sciences (Contributor)
Created2014-05
137642-Thumbnail Image.png
Description
The paper was written for the International Group for Lean Construction Conference in July 2013 in Fortaleza, Brazil.

With the advent of sustainable building ordinances in the United States and internationally, contractors are required to deliver sustainable projects but have historically not been considered partners in developing the sustainability goals and

The paper was written for the International Group for Lean Construction Conference in July 2013 in Fortaleza, Brazil.

With the advent of sustainable building ordinances in the United States and internationally, contractors are required to deliver sustainable projects but have historically not been considered partners in developing the sustainability goals and objectives for projects. Additionally, as alternative project delivery methods gain popularity, contractors have an opportunity and—in an increasing number of cases—a requirement, to take a larger role in sustainability efforts beyond the design phase. Understanding the contractor’s self-perceived role in this industry is imperative to informing their future role in the sustainable construction industry. This paper presents data and analysis of a survey of general contractors in the Phoenix, Arizona market that asked for their opinions and viewpoints regarding sustainable construction. Respondents provided feedback about corporate profitability, growth forecast, and the perceived efficiency of the U.S Green Building Council’s LEED rating system. The survey also queried contractors about current and future work breakdown structures for sustainable project delivery as well as their underlying motives for involvement in these projects.
Academics from Arizona State University worked with local industry to develop the survey in 2012 and the survey was deployed in 2013. We sent the survey to 76 contractors and received responses from 21, representing a 27.6% response rate. Respondents include representatives from general contractors, mechanical contractors, and electrical contractors, among others. This paper presents the responses from general contractors as they typically have most contact with the owner and design teams.
ContributorsHolloway, Skyler Brock (Author) / Parrish, Kristen (Thesis director) / Bashford, Howard (Committee member) / Meek, Jeremy (Committee member) / Barrett, The Honors College (Contributor) / School of Sustainability (Contributor) / W. P. Carey School of Business (Contributor) / Del E. Webb Construction (Contributor)
Created2013-05