Matching Items (2,677)
Filtering by

Clear all filters

151422-Thumbnail Image.png
Description
The Santa Cruz River, in southern Arizona, receives steady inputs of nutrient-enriched treated wastewater (effluent). Previous studies have documented reduced infiltration of surface water in the river. This disruption of hydrologic connectivity, or clogging, can have consequences for groundwater recharge, flows of wastewater in unwanted locations, and potentially even survivorshi

The Santa Cruz River, in southern Arizona, receives steady inputs of nutrient-enriched treated wastewater (effluent). Previous studies have documented reduced infiltration of surface water in the river. This disruption of hydrologic connectivity, or clogging, can have consequences for groundwater recharge, flows of wastewater in unwanted locations, and potentially even survivorship of floodplain riparian vegetation. Clogging can result from biotic processes (microbial or algal growth), abiotic processes (siltation of interstitial spaces), or both. Little is known about clogging in rivers and the environmental factors that regulate their dynamics, so natural field experiments along the Santa Cruz and San Pedro Rivers were used to answer: 1) Are there spatial patterns of hydraulic conductivity in the riverbed downstream from the effluent point-source? 2) Is there temporal variability in hydraulic conductivity and microbial abundance associated with flooding? 3) Are there environmental variables, such as nutrients or stream flow, related to differences in hydraulic conductivity and microbial abundance? To address these questions, a series of sites at increasing distance from two municipal effluent discharge points with differing water quality were selected on the Santa Cruz River and compared with non-effluent control reaches of the San Pedro River. Physical, chemical, and biological parameters were monitored over one year to capture seasonal changes and flood cycles.
ContributorsCase, Natalie (Author) / Stromberg, Juliet (Thesis advisor) / Rock, Channah (Committee member) / Meixner, Thomas (Committee member) / Arizona State University (Publisher)
Created2012
152323-Thumbnail Image.png
Description
Sustainability visioning (i.e. the construction of sustainable future states) is considered an important component of sustainability research, for instance, in transformational sustainability science or in planning for urban sustainability. Visioning frees sustainability research from the dominant focus on analyzing problem constellations and opens it towards positive contributions to social innovation

Sustainability visioning (i.e. the construction of sustainable future states) is considered an important component of sustainability research, for instance, in transformational sustainability science or in planning for urban sustainability. Visioning frees sustainability research from the dominant focus on analyzing problem constellations and opens it towards positive contributions to social innovation and transformation. Calls are repeatedly made for visions that can guide us towards sustainable futures. Scattered across a broad range of fields (i.e. business, non-government organization, land-use management, natural resource management, sustainability science, urban and regional planning) are an abundance of visioning studies. However, among the few evaluative studies in the literature there are apparent deficits in both the research and practice of visioning that curtails our expectations and prospects of realizing process-based and product-derived outcomes. These deficits suggests that calls instead should focus on the development of applied and theoretical understanding of crafting sustainability visions, enhancing the rigor and robustness of visioning methodology, and on integrating practice, research, and education for collaborative sustainability visioning. From an analysis of prominent visioning and sustainability visioning studies in the literature, this dissertation articulates what is sustainability visioning and synthesizes a conceptual framework for criteria-based design and evaluation of sustainability visioning studies. While current visioning methodologies comply with some of these guidelines, none adhere to all of them. From this research, a novel sustainability visioning methodology is designed to address this gap to craft visions that are shared, systemic, principles-based, action-oriented, relevant, and creative (i.e. SPARC visioning methodology) and evaluated across all quality criteria. Empirical studies were conducted to test and apply the conceptual and methodological frameworks -- with an emphasis on enhancing the rigor and robustness in real world visioning processes for urban planning and teaching sustainability competencies. In-depth descriptions of the collaborative visioning studies demonstrate tangible outcomes for: (a) implementing the above sustainability visioning methodology, including evaluative procedures; (b) adopting meaningful interactive engagement procedures; (c) integrating advanced analytical modeling, sustainability appraisal, and creativity enhancing procedures; and (d) developing perspective and methodological capacity for long-range sustainability planning.
ContributorsIwaniec, David (Author) / Wiek, Arnim (Thesis advisor) / Childers, Daniel L. (Committee member) / Lant, Timothy (Committee member) / Arizona State University (Publisher)
Created2013
152591-Thumbnail Image.png
Description
The explicit role of soil organisms in shaping soil health, rates of pedogenesis, and resistance to erosion has only just recently begun to be explored in the last century. However, much of the research regarding soil biota and soil processes is centered on maintaining soil fertility (e.g., plant nutrient availability)

The explicit role of soil organisms in shaping soil health, rates of pedogenesis, and resistance to erosion has only just recently begun to be explored in the last century. However, much of the research regarding soil biota and soil processes is centered on maintaining soil fertility (e.g., plant nutrient availability) and soil structure in mesic- and agro- ecosystems. Despite the empirical and theoretical strides made in soil ecology over the last few decades, questions regarding ecosystem function and soil processes remain, especially for arid areas. Arid areas have unique ecosystem biogeochemistry, decomposition processes, and soil microbial responses to moisture inputs that deviate from predictions derived using data generated in more mesic systems. For example, current paradigm predicts that soil microbes will respond positively to increasing moisture inputs in a water-limited environment, yet data collected in arid regions are not congruent with this hypothesis. The influence of abiotic factors on litter decomposition rates (e.g., photodegradation), litter quality and availability, soil moisture pulse size, and resulting feedbacks on detrital food web structure must be explicitly considered for advancing our understanding of arid land ecology. However, empirical data coupling arid belowground food webs and ecosystem processes are lacking. My dissertation explores the resource controls (soil organic matter and soil moisture) on food web network structure, size, and presence/absence of expected belowground trophic groups across a variety of sites in Arizona.
ContributorsWyant, Karl Arthur (Author) / Sabo, John L (Thesis advisor) / Elser, James J (Committee member) / Childers, Daniel L. (Committee member) / Hall, Sharon J (Committee member) / Stromberg, Juliet C. (Committee member) / Arizona State University (Publisher)
Created2014
152681-Thumbnail Image.png
Description
Ephemeral streams in Arizona that are perpendicularly intersected by the Central Arizona Project (CAP) canal have been altered due to partial or complete damming of the stream channel. The dammed upstream channels have experienced decades long cycles of sediment deposition and waterlogging during storm events causing the development of "green-up"

Ephemeral streams in Arizona that are perpendicularly intersected by the Central Arizona Project (CAP) canal have been altered due to partial or complete damming of the stream channel. The dammed upstream channels have experienced decades long cycles of sediment deposition and waterlogging during storm events causing the development of "green-up" zones. This dissertation examines the biogeomorphological effects of damming ephemeral streams caused by the CAP canal by investigating: (1) changes in the preexisting spatial cover of riparian vegetation and how these changes are affected by stream geometry; (2) green-up initiation and evolution; and (3) changes in plant species and community level changes. To the author's knowledge, this is the only study that undertakes an interdisciplinary approach to understanding the environmental responses to anthropogenically-altered ephemeral stream channels. The results presented herein show that vegetation along the upstream section increased by an average of 200,872 m2 per kilometer of the CAP canal over a 28 year period. Vegetation growth was compared to channel widths which share a quasi-linear relationship. Remote sensing analysis of Landsat TM images using an object-oriented approach shows that riparian vegetation cover gradually increased over 28 years. Field studies reveal that the increases in vegetation are attributed to the artificial rise in local base-level upstream created by the canal, which causes water to spill laterally onto the desert floor. Vegetation within the green-up zone varies considerably in comparison to pre-canal construction. Changes are most notable in vegetation community shifts and abundance. The wettest section of the green-up zone contains the greatest density of woody plant stems, the greatest vegetation volume, and a high percentage of herbaceous cover. Vegetation within wetter zones changed from a tree-shrub to a predominantly tree-herb assemblage, whereas desert shrubs located in zones with intermediate moisture have developed larger stems. Results from this study lend valuable insight to green-up processes associated with damming ephemeral streams, which can be applied to planning future canal or dam projects in drylands. Also, understanding the development of the green-up zones provide awareness to potentially avoiding flood damage to infrastructure that may be unknowingly constructed within the slow-growing green-up zone.
ContributorsHamdan, Abeer (Author) / Schmeeckle, Mark (Thesis advisor) / Myint, Soe (Thesis advisor) / Dorn, Ronald (Committee member) / Stromberg, Juliet (Committee member) / Arizona State University (Publisher)
Created2014
153405-Thumbnail Image.png
Description
Despite the breadth of studies investigating ecosystem development, an underlying theory guiding this process remains elusive. Several principles have been proposed to explain ecosystem development, though few have garnered broad support in the literature. I used boreal wetland soils as a study system to test a notable goal oriented principle:

Despite the breadth of studies investigating ecosystem development, an underlying theory guiding this process remains elusive. Several principles have been proposed to explain ecosystem development, though few have garnered broad support in the literature. I used boreal wetland soils as a study system to test a notable goal oriented principle: The Maximum Power Principle (MPP). The MPP posits that ecosystems, and in fact all energy systems, develop to maximize power production or the rate of energy production. I conducted theoretical and empirical investigations to test the MPP in northern wetlands.

Permafrost degradation is leading to rapid wetland formation in northern peatland ecosystems, altering the role of these ecosystems in the global carbon cycle. I reviewed the literature on the history of the MPP theory, including tracing its origins to The Second Law of Thermodynamics. To empirically test the MPP, I collected soils along a gradient of ecosystem development and: 1) quantified the rate of adenosine triphosphate (ATP) production--literally cellular energy--to test the MPP; 2) quantified greenhouse gas production (CO2, CH4, and N2O) and microbial genes that produce enzymes catalyzing greenhouse gas production, and; 3) sequenced the 16s rRNA gene from soil microbes to investigate microbial community composition across the chronosequence of wetland development. My results suggested that the MPP and other related theoretical constructs have strong potential to further inform our understanding of ecosystem development. Soil system power (ATP) decreased temporarily as the ecosystem reorganized after disturbance to rates of power production that approached pre-disturbance levels. Rates of CH4 and N2O production were higher at the newly formed bog and microbial genes involved with greenhouse gas production were strongly related to the amount of greenhouse gas produced. DNA sequencing results showed that across the chronosequence of development, the two relatively mature ecosystems--the peatland forest ecosystem prior to permafrost degradation and the oldest bog--were more similar to one another than to the intermediate, less mature bog. Collectively, my results suggest that ecosystem age, rather than ecosystem state, was a more important driver for ecosystem structure and function.
ContributorsChapman, Eric (Author) / Childers, Daniel L. (Thesis advisor) / Cadillo-Quiroz, Hinsby (Committee member) / Hall, Sharon J (Committee member) / Turetsky, Merritt (Committee member) / Arizona State University (Publisher)
Created2015
153351-Thumbnail Image.png
Description

Humans have dramatically increased phosphorus (P) availability in terrestrial and aquatic ecosystems. As P is often a limiting nutrient of primary production, changes in its availability can have dramatic effects on ecosystem processes. I examined the effects of calcium carbonate (CaCO3) deposition, which can lower P concentrations via coprecipitation of

Humans have dramatically increased phosphorus (P) availability in terrestrial and aquatic ecosystems. As P is often a limiting nutrient of primary production, changes in its availability can have dramatic effects on ecosystem processes. I examined the effects of calcium carbonate (CaCO3) deposition, which can lower P concentrations via coprecipitation of phosphate, on P availability in two systems: streams in the Huachuca Mountains, Arizona, and a stream, Río Mesquites, in Cuatro Ciénegas, México. Calcium carbonate forms as travertine in the former and within the microbialites of the latter. Despite these differences, CaCO3 deposition led to lowered P availability in both systems. By analyzing a three-year dataset of water chemistry from the Huachuca Mountain streams, I determined that P concentrations were negatively related to CaCO3 deposition rates. I also discovered that CaCO3 was positively correlated with nitrogen concentrations, suggesting that the stoichiometric effect of CaCO3 deposition on nutrient availability is due not only to coprecipitation of phosphate, but also to P-related constraints on biotic nitrogen uptake. Building from these observations, bioassays of nutrient limitation of periphyton growth suggest that P limitation is more prevalent in streams with active CaCO3 deposition than those without. Furthermore, when I experimentally reduced rates of CaCO3 deposition within one of the streams by partial light-exclusion, areal P uptake lengths decreased, periphyton P content and growth increased, and periphyton nutrient limitation by P decreased. In Río Mesquites, CaCO3 deposition was also associated with P limitation of microbial growth. There, I investigated the consequences of reductions in CaCO3 deposition with several methods. Calcium removal led to increased concentrations of P in the microbial biomass while light reductions decreased microbial biomass and chemical inhibition had no effect. These results suggest that CaCO3 deposition in microbialites does limit biological uptake of P, that photoautotrophs play an important role in nutrient acquisition, and, combined with other experimental observations, that sulfate reduction may support CaCO3 deposition in the microbialite communities of Río Mesquites. Overall, my results suggest that the effects of CaCO3 deposition on P availability are general and this process should be considered when managing nutrient flows across aquatic ecosystems.

ContributorsCorman, Jessica R. (Author) / Elser, James J (Thesis advisor) / Anbar, Ariel D (Committee member) / Childers, Daniel L. (Committee member) / Grimm, Nancy (Committee member) / Souza, Valeria (Committee member) / Arizona State University (Publisher)
Created2015
149766-Thumbnail Image.png
Description
Worldwide, riverine floodplains are among the most endangered landscapes. In response to anthropogenic impacts, riverine restoration projects are considerably increasing. However, there is a paucity of information on how riparian rehabilitation activities impact non-avian wildlife communities. I evaluated herpetofauna abundance, species richness, diversity (i.e., Shannon and Simpson indices), species-specific responses,

Worldwide, riverine floodplains are among the most endangered landscapes. In response to anthropogenic impacts, riverine restoration projects are considerably increasing. However, there is a paucity of information on how riparian rehabilitation activities impact non-avian wildlife communities. I evaluated herpetofauna abundance, species richness, diversity (i.e., Shannon and Simpson indices), species-specific responses, and riparian microhabitat characteristics along three reaches (i.e., wildland, urban rehabilitated, and urban disturbed) of the Salt River, Arizona. The surrounding uplands of the two urbanized reaches were dominated by the built environment (i.e., Phoenix metropolitan area). I predicted that greater diversity of microhabitat and lower urbanization would promote herpetofauna abundance, richness, and diversity. In 2010, at each reach, I performed herpetofauna visual surveys five times along eight transects (n=24) spanning the riparian zone. I quantified twenty one microhabitat characteristics such as ground substrate, vegetative cover, woody debris, tree stem density, and plant species richness along each transect. Herpetofauna species richness was the greatest along the wildland reach, and the lowest along the urban disturbed reach. The wildland reach had the greatest diversity indices, and diversity indices of the two urban reaches were similar. Abundance of herpetofauna was approximately six times lower along the urban disturbed reach compared to the two other reaches, which had similar abundances. Principal Component Analysis (PCA) reduced microhabitat variables to five factors, and significant differences among reaches were detected. Vegetation structure complexity, vegetation species richness, as well as densities of Prosopis (mesquite), Salix (willow), Populus (cottonwood), and animal burrows had a positive correlation with at least one of the three herpetofauna community parameter quantified (i.e., herpetofauna abundance, species richness, and diversity indices), and had a positive correlation with at least one herpetofauna species. Overall, rehabilitation activities positively influenced herpetofauna abundance and species richness, whereas urbanization negatively influenced herpetofauna diversity indices. Based on herpetofauna/microhabitat correlations established, I developed recommendations regarding microhabitat features that should be created in order to promote herpetofauna when rehabilitating degraded riparian systems. Recommendations are to plant vegetation of different growth habit, provide woody debris, plant Populus, Salix, and Prosopis of various ages and sizes, and to promote small mammal abundance.
ContributorsBanville, Mélanie Josianne (Author) / Bateman, Heather L (Thesis advisor) / Brady, Ward (Committee member) / Stromberg, Juliet (Committee member) / Arizona State University (Publisher)
Created2011
149717-Thumbnail Image.png
Description
Coal bed natural gas (CBNG) production has become a significant contribution to the nation's energy supply. Large volumes of water are generated as a byproduct of CBNG extraction, of which this "product water" is relatively high in sodium. High sodicity reduces water quality and limits environmentally compliant disposal options for

Coal bed natural gas (CBNG) production has become a significant contribution to the nation's energy supply. Large volumes of water are generated as a byproduct of CBNG extraction, of which this "product water" is relatively high in sodium. High sodicity reduces water quality and limits environmentally compliant disposal options for producers. Crop irrigation with CBNG product water complies with state and federal laws and is a disposal method that also provides a beneficial use to private landowners. However, this disposal method typically requires gypsum and sulfur soil amendments due to the high levels of sodium in the water, which can reduce soil infiltration and hydraulic conductivity. In this study, I tested a new product called Salt Extractor that was marketed to CBNG producers to ameliorate the negative effects of high sodicity. The experiment was conducted in the Powder River Basin of Wyoming. I used a random block design to compare the soil and vegetation properties of plots following application with CBNG product water and treatments of either Salt Extractor, gypsum and sulfur (conventional), or no treatment (control). Data was analyzed by comparing the amount of change between treatments after watering. Results demonstrated the known ability of gypsum and sulfur to lower the relative sodicity of the soil. Plots treated with Salt Extractor, however, did not improve relative levels of sodicity and exhibited no favorable benefits to vegetation.
ContributorsAdams, Shelly (Author) / Hall, Sharon (Thesis advisor) / Chew, Matt (Committee member) / Stromberg, Juliet (Committee member) / Arizona State University (Publisher)
Created2011
150124-Thumbnail Image.png
Description
Sinaloa, a coastal state in the northwest of Mexico, is known for irrigated conventional agriculture, and is considered one of the greatest successes of the Green Revolution. With the neoliberal reforms of the 1990s, Sinaloa farmers shifted out of conventional wheat, soy, cotton, and other commodities and into white maize,

Sinaloa, a coastal state in the northwest of Mexico, is known for irrigated conventional agriculture, and is considered one of the greatest successes of the Green Revolution. With the neoliberal reforms of the 1990s, Sinaloa farmers shifted out of conventional wheat, soy, cotton, and other commodities and into white maize, a major food staple in Mexico that is traditionally produced by millions of small-scale farmers. Sinaloa is now a major contributor to the national food supply, producing 26% of total domestic white maize production. Research on Sinaloa's maize has focused on economic and agronomic components. Little attention, however, has been given to the environmental sustainability of Sinaloa's expansion in maize. With uniquely biodiverse coastal and terrestrial ecosystems that support economic activities such as fishing and tourism, the environmental consequences of agriculture in Sinaloa are important to monitor. Agricultural sustainability assessments have largely focused on alternative agricultural approaches, or espouse alternative philosophies that are biased against conventional production. Conventional agriculture, however, provides a significant portion of the world's calories. In addition, incentives such as federal subsidies and other institutions complicate transitions to alternative modes of production. To meet the agricultural sustainability goals of food production and environmental stewardship, we must put conventional agriculture on a more sustainable path. One step toward achieving this is structuring agricultural sustainability assessments around achievable goals that encourage continual adaptations toward sustainability. I attempted this in my thesis by assessing conventional maize production in Sinaloa at the regional/state scale using network analysis and incorporating stakeholder values through a multicriteria decision analysis approach. The analysis showed that the overall sustainability of Sinaloa maize production is far from an ideal state. I made recommendations on how to improve the sustainability of maize production, and how to better monitor the sustainability of agriculture in Sinaloa.
ContributorsBausch, Julia Christine (Author) / Eakin, Hallie (Thesis advisor) / Bojórquez-Tapia, Luis (Committee member) / Childers, Daniel L. (Committee member) / Arizona State University (Publisher)
Created2011