Matching Items (36)
151577-Thumbnail Image.png
Description
A dental exam in twenty-first century America generally includes the taking of radiographs, which are x-ray images of the mouth. These images allow dentists to see structures below the gum line and within the teeth. Having a patient's radiographs on file has become a dental standard of care in many

A dental exam in twenty-first century America generally includes the taking of radiographs, which are x-ray images of the mouth. These images allow dentists to see structures below the gum line and within the teeth. Having a patient's radiographs on file has become a dental standard of care in many states, but x-rays were only discovered a little over 100 years ago. This research analyzes how and why the x-ray image has become a ubiquitous tool in the dental field. Primary literature written by dentists and scientists of the time shows that the x-ray was established in dentistry by the 1950s. Therefore, this thesis tracks the changes in x-ray technological developments, the spread of information and related safety concerns between 1890 and 1955. X-ray technology went from being an accidental discovery to a device commonly purchased by dentists. X-ray information started out in the form of the anecdotes of individuals and led to the formation of large professional groups. Safety concerns of only a few people later became an important facet of new devices. These three major shifts are described by looking at those who prompted the changes; they fall into the categories of people, technological artifacts and institutions. The x-ray became integrated into dentistry as a product of the work of people such as C. Edmund Kells, a proponent of dental x-rays, technological improvements including faster film speed, and the influence of institutions such as Victor X-Ray Company and the American Dental Association. These changes that resulted established a strong foundation of x-ray technology in dentistry. From there, the dental x-ray developed to its modern form.
ContributorsMartinez, Britta (Author) / Ellison, Karin (Thesis advisor) / Maienschein, Jane (Thesis advisor) / Hurlbut, Ben (Committee member) / Arizona State University (Publisher)
Created2013
172912-Thumbnail Image.png
Description

Roy Chapman Andrews traveled the world studying fossils, from mammals to dinosaurs, during the first half of the twentieth century. Andrews worked and collected fossil specimens for the American Museum of Natural History (AMNH) in New York City, New York. Throughout his career, Andrews collected bones of many animal species,

Roy Chapman Andrews traveled the world studying fossils, from mammals to dinosaurs, during the first half of the twentieth century. Andrews worked and collected fossil specimens for the American Museum of Natural History (AMNH) in New York City, New York. Throughout his career, Andrews collected bones of many animal species, including a previously unknown species of a horned, herbivorous dinosaur, later named Proceratops andrewsi in his honor. Andrews published widely read narratives about his travels and field experiences, such as On the Trail of Ancient Man and Across Mongolian Plains. Andrews led expeditions for the Central Asiatic Expeditions in the Gobi Desert, which recovered many previously unknown fossil specimens. His Central Asiatic team discovered the first scientifically recognized dinosaur eggs, which provided scientists with information about the eggs that dinosaurs produced.

Created2015-01-22
172922-Thumbnail Image.png
Description

Oviraptor philoceratops was a small bird-like dinosaur that lived about seventy-five million years ago, during the late Cretaceous period. In 1923, George Olsen of the American Museum of Natural History (AMNH) in New York City, New York, discovered the first Oviraptor fossilized skeleton on top of a dinosaur egg nest

Oviraptor philoceratops was a small bird-like dinosaur that lived about seventy-five million years ago, during the late Cretaceous period. In 1923, George Olsen of the American Museum of Natural History (AMNH) in New York City, New York, discovered the first Oviraptor fossilized skeleton on top of a dinosaur egg nest in the Gobi Desert, Mongolia. Because of the close proximity of dinosaur and nest, when Henry Fairfield Osborn president of the AMNH published on the discovery, he assumed that the Oviraptor had died attempting to steal the eggs. However, since the initial discovery, more Oviraptor adults, eggs, and a well-preserved embryo fossil have confirmed that Oviraptors were parents who sat on their nests, a behavior called brooding common among birds. The fossils of Oviraptor philoceratops, from eggs and embryos to adults, provide evidence about dinosaur growth, development, and reproductive behaviors.

Created2015-02-11
172857-Thumbnail Image.png
Description

George Wells Beadle studied corn, fruit flies, and funguses in the US during the twentieth century. These studies helped Beadle earn the 1958 Nobel Prize in Physiology or Medicine. Beadle shared the prize with Edward Tatum for their discovery that genes help regulate chemical processes in and between cells. This

George Wells Beadle studied corn, fruit flies, and funguses in the US during the twentieth century. These studies helped Beadle earn the 1958 Nobel Prize in Physiology or Medicine. Beadle shared the prize with Edward Tatum for their discovery that genes help regulate chemical processes in and between cells. This finding, initially termed the one gene-one enzyme hypothesis, helped scientists develop new techniques to study genes and DNA as molecules, not just as units of heredity between generations of organisms. By inducing mutations in organisms while they were in different embryonic stages, Beadle's work on Drosophila and Neurospora led to the analysis of the cell cycle and embryonic development processes.

Created2014-03-14
172861-Thumbnail Image.png
Description

Friedrich Tiedemann studied the anatomy of humans and animals in the nineteenth century in Germany. He published on zoological subjects, on the heart of fish, the anatomy of amphibians and echinoderms, and the lymphatic and respiratory system in birds. In addition to his zoological anatomy, Tiedemann, working with the chemist

Friedrich Tiedemann studied the anatomy of humans and animals in the nineteenth century in Germany. He published on zoological subjects, on the heart of fish, the anatomy of amphibians and echinoderms, and the lymphatic and respiratory system in birds. In addition to his zoological anatomy, Tiedemann, working with the chemist Leopold Gmelin, published about how the digestive system functioned. Towards the end of his career Tiedemann published a comparative anatomy of the brains of white Europeans, black Africans, and Orangutans, in which he argued that there were no appreciable differences between the structure of the brains of blacks, women, and white European men that would suggest they were intellectually different. Tiedemann also researched the embryonic development of the brain and circulatory systems of human fetuses.

Created2015-07-07
172872-Thumbnail Image.png
Description

Roy John Britten studied DNA sequences in the US in the second
half of the twentieth century, and he helped discover repetitive
elements in DNA sequences. Additionally, Britten helped propose
models and concepts of gene regulatory networks. Britten studied the
organization of repetitive elements and, analyzing

Roy John Britten studied DNA sequences in the US in the second
half of the twentieth century, and he helped discover repetitive
elements in DNA sequences. Additionally, Britten helped propose
models and concepts of gene regulatory networks. Britten studied the
organization of repetitive elements and, analyzing data from the
Human Genome Project, he found that the repetitive elements in DNA
segments do not code for proteins, enzymes, or cellular parts.
Britten hypothesized that repetitive elements helped cause cells to
differentiate into more specific cell kinds among different
organisms.

Created2014-10-24
172894-Thumbnail Image.png
Description

St. George Jackson Mivart studied animals and worked in England during the nineteenth century. He also proposed a theory of organismal development that he called individuation, and he critiqued Charles Darwin's argument for evolution by natural selection. His work on prosimians, a group of primates excluding apes and monkeys, helped

St. George Jackson Mivart studied animals and worked in England during the nineteenth century. He also proposed a theory of organismal development that he called individuation, and he critiqued Charles Darwin's argument for evolution by natural selection. His work on prosimians, a group of primates excluding apes and monkeys, helped scientists better investigate the Primate group. In his work On the Genesis of Species, Mivart argued that Darwin's theory couldn't explain how specific organismal forms developed and varied, explanations Mivart argued were necessary before Darwin could invoke the mechanism of natural selection to explain the evolution of species. To provide those explanations Mivart proposed theories of individuation and of instinct.

Created2014-04-04
173904-Thumbnail Image.png
Description

In 1914 Albert Niemann, a German pediatrician who primarily studied infant metabolism, published a description of an Ashkenazi Jewish infant with jaundice, nervous system and brain impairments, swollen lymph nodes (lymphadenopathy), and an enlarged liver and spleen (hepatosplenomegaly). He reported that these anatomical disturbances resulted in the premature death of

In 1914 Albert Niemann, a German pediatrician who primarily studied infant metabolism, published a description of an Ashkenazi Jewish infant with jaundice, nervous system and brain impairments, swollen lymph nodes (lymphadenopathy), and an enlarged liver and spleen (hepatosplenomegaly). He reported that these anatomical disturbances resulted in the premature death of the child at the age of eighteen months. After extensively studying the abnormal characteristics of the infant, Niemann came to the conclusion that the disease was a variant of Gaucher's disease. Gaucher's disease, described by the French dermatologist Philippe Gaucher in 1882, is a lipid storage disorder resulting in an excessive accumulation of lipids in the spleen, kidneys, liver, lungs, bone marrow, and brain. Niemann was able to connect the infant's disease to Gaucher's disease because it displayed similar symptoms: a noticeable accumulation of fatty substances in the brain, liver, and spleen.

Created2010-10-11
173801-Thumbnail Image.png
Description

The Law of Acceleration of Growth is a theory proposed by Edward Drinker Cope in the US during the nineteenth century. Cope developed it in an attempt to explain the evolution of genera by appealing to changes in the developmental timelines of organisms. Cope proposed this law as an additional

The Law of Acceleration of Growth is a theory proposed by Edward Drinker Cope in the US during the nineteenth century. Cope developed it in an attempt to explain the evolution of genera by appealing to changes in the developmental timelines of organisms. Cope proposed this law as an additional theory to natural selection. He argued that the evolution of genera, the more general groups within which biologists group species, occurs when the individual in a species move through developmental stages faster than did their ancestors, but within the same fixed period of gestation, and thus can undergo new developmental stages and develop new traits. The Law of Acceleration compliments Cope's Law of Retardation of Growth. He described the later law as the process by which organisms revert to an ancestral stage. In these cases, forces suppress the most recent traits or stages common to the development of individuals from different species within the same genus. Cope described evolution as progressive, following a predetermined path, a perspective about evolution sometimes called orthogenetic. Cope's was one among many orthogenic theories in the second half of the nineteenth century. Furthermore, the theory was part of a trend in nineteenth century in which some biologists claimed that the changes in developmental timing of organisms could explain large changes in biological forms throughout natural history.

Created2014-07-24
173805-Thumbnail Image.png
Description

Embryogenesis is an intricate process that can easily be disrupted by means of teratogenic agents. Some of these agents target the embryonic period's "window of susceptibility," three to eight weeks after a pregnant woman's last menstruation, when the highest degree of sensitivity to embryonic cell differentiation and organ formation occurs.

Embryogenesis is an intricate process that can easily be disrupted by means of teratogenic agents. Some of these agents target the embryonic period's "window of susceptibility," three to eight weeks after a pregnant woman's last menstruation, when the highest degree of sensitivity to embryonic cell differentiation and organ formation occurs. The embryonic period or critical period is when most organ systems form, whereas the fetal period, week eight to birth, involves the growth and modeling of the organ systems. During the window of susceptibility, teratogens such as thalidomide can severely damage critical milestones of embryonic development.

Created2010-09-12