Matching Items (63)
141382-Thumbnail Image.png
Description

The City of Phoenix (Arizona, USA) developed a Tree and Shade Master Plan and a Cool Roofs initiative to ameliorate extreme heat during the summer months in their arid city. This study investigates the impact of the City's heat mitigation strategies on daytime microclimate for a pre-monsoon summer day under

The City of Phoenix (Arizona, USA) developed a Tree and Shade Master Plan and a Cool Roofs initiative to ameliorate extreme heat during the summer months in their arid city. This study investigates the impact of the City's heat mitigation strategies on daytime microclimate for a pre-monsoon summer day under current climate conditions and two climate change scenarios. We assessed the cooling effect of trees and cool roofs in a Phoenix residential neighborhood using the microclimate model ENVI-met. First, using xeric landscaping as a base, we created eight tree planting scenarios (from 0% canopy cover to 30% canopy cover) for the neighborhood to characterize the relationship between canopy cover and daytime cooling benefit of trees. In a second set of simulations, we ran ENVI-met for nine combined tree planting and landscaping scenarios (mesic, oasis, and xeric) with regular roofs and cool roofs under current climate conditions and two climate change projections. For each of the 54 scenarios, we compared average neighborhood mid-afternoon air temperatures and assessed the benefits of each heat mitigation measure under current and projected climate conditions. Findings suggest that the relationship between percent canopy cover and air temperature reduction is linear, with 0.14 °C cooling per percent increase in tree cover for the neighborhood under investigation. An increase in tree canopy cover from the current 10% to a targeted 25% resulted in an average daytime cooling benefit of up to 2.0 °C in residential neighborhoods at the local scale. Cool roofs reduced neighborhood air temperatures by 0.3 °C when implemented on residential homes. The results from this city-specific mitigation project will inform messaging campaigns aimed at engaging the city decision makers, industry, and the public in the green building and urban forestry initiatives.

ContributorsMiddel, Ariane (Author) / Chhetri, Nalini (Author) / Quay, Raymond (Author)
Created2015
141419-Thumbnail Image.png
Description

Shade plays an important role in designing pedestrian-friendly outdoor spaces in hot desert cities. This study investigates the impact of photovoltaic canopy shade and tree shade on thermal comfort through meteorological observations and field surveys at a pedestrian mall on Arizona State University’s Tempe campus. During the course of 1

Shade plays an important role in designing pedestrian-friendly outdoor spaces in hot desert cities. This study investigates the impact of photovoltaic canopy shade and tree shade on thermal comfort through meteorological observations and field surveys at a pedestrian mall on Arizona State University’s Tempe campus. During the course of 1 year, on selected clear calm days representative of each season, we conducted hourly meteorological transects from 7:00 a.m. to 6:00 p.m. and surveyed 1284 people about their thermal perception, comfort, and preferences. Shade lowered thermal sensation votes by approximately 1 point on a semantic differential 9-point scale, increasing thermal comfort in all seasons except winter. Shade type (tree or solar canopy) did not significantly impact perceived comfort, suggesting that artificial and natural shades are equally efficient in hot dry climates. Globe temperature explained 51 % of the variance in thermal sensation votes and was the only statistically significant meteorological predictor. Important non-meteorological factors included adaptation, thermal comfort vote, thermal preference, gender, season, and time of day. A regression of subjective thermal sensation on physiological equivalent temperature yielded a neutral temperature of 28.6 °C. The acceptable comfort range was 19.1 °C–38.1 °C with a preferred temperature of 20.8 °C. Respondents exposed to above neutral temperature felt more comfortable if they had been in air-conditioning 5 min prior to the survey, indicating a lagged response to outdoor conditions. Our study highlights the importance of active solar access management in hot urban areas to reduce thermal stress.

ContributorsMiddel, Ariane (Author) / Selover, Nancy (Author) / Hagen, Bjorn (Author) / Chhetri, Nalini (Author)
Created2016-05-18
141423-Thumbnail Image.png
Description

Background:
Environmental heat exposure is a public health concern. The impacts of environmental heat on mortality and morbidity at the population scale are well documented, but little is known about specific exposures that individuals experience.

Objectives:
The first objective of this work was to catalyze discussion of the role of personal heat exposure

Background:
Environmental heat exposure is a public health concern. The impacts of environmental heat on mortality and morbidity at the population scale are well documented, but little is known about specific exposures that individuals experience.

Objectives:
The first objective of this work was to catalyze discussion of the role of personal heat exposure information in research and risk assessment. The second objective was to provide guidance regarding the operationalization of personal heat exposure research methods.

Discussion:
We define personal heat exposure as realized contact between a person and an indoor or outdoor environment that poses a risk of increases in body core temperature and/or perceived discomfort. Personal heat exposure can be measured directly with wearable monitors or estimated indirectly through the combination of time–activity and meteorological data sets. Complementary information to understand individual-scale drivers of behavior, susceptibility, and health and comfort outcomes can be collected from additional monitors, surveys, interviews, ethnographic approaches, and additional social and health data sets. Personal exposure research can help reveal the extent of exposure misclassification that occurs when individual exposure to heat is estimated using ambient temperature measured at fixed sites and can provide insights for epidemiological risk assessment concerning extreme heat.

Conclusions:
Personal heat exposure research provides more valid and precise insights into how often people encounter heat conditions and when, where, to whom, and why these encounters occur. Published literature on personal heat exposure is limited to date, but existing studies point to opportunities to inform public health practice regarding extreme heat, particularly where fine-scale precision is needed to reduce health consequences of heat exposure.

ContributorsKuras, Evan R. (Author) / Richardson, Molly B. (Author) / Calkins, Mirian M. (Author) / Ebi, Kristie L. (Author) / Gohlke, Julia M. (Author) / Hess, Jeremy J. (Author) / Hondula, David M. (Author) / Kintziger, Kristina W. (Author) / Jagger, Meredith A. (Author) / Middel, Ariane (Author) / Scott, Anna A. (Author) / Spector, June T. (Contributor) / Uejio, Christopher K. (Author) / Vanos, Jennifer K. (Author) / Zaitchik, Benjamin F. (Author)
Created2017-08
103-Thumbnail Image.png
Description

Access to air conditioned space is critical for protecting urban populations from the adverse effects of heat exposure. Yet there remains fairly limited knowledge of penetration of private (home air conditioning) and distribution of public (cooling centers and commercial space) cooled space across cities. Furthermore, the deployment of government-sponsored cooling

Access to air conditioned space is critical for protecting urban populations from the adverse effects of heat exposure. Yet there remains fairly limited knowledge of penetration of private (home air conditioning) and distribution of public (cooling centers and commercial space) cooled space across cities. Furthermore, the deployment of government-sponsored cooling centers is not based on the location of existing cooling resources (residential air conditioning and air conditioned public space), raising questions of the equitability of access to heat refuges.

Using Los Angeles County, California and Maricopa County, Arizona (whose county seat is Phoenix) we explore the distribution of private and public cooling resources and access inequities at the household level. We do this by evaluating the presence of in-home air conditioning and developing a walking-based accessibility measure to air conditioned public space using a combined cumulative opportunities-gravity approach. We find significant inequities in the distribution of residential air conditioning across both regions which are largely attributable to building age and inter/intra-regional climate differences. There are also regional disparities in walkable access to public cooled space.

At average walking speeds, we find that official cooling centers are only accessible to a small fraction of households (3% in Los Angeles, 2% in Maricopa) while a significantly higher number of households (80% in Los Angeles, 39% in Maricopa) have access to at least one other type of public cooling resource which includes libraries and commercial establishments. Aggregated to a neighborhood level, we find that there are areas within each region where access to cooled space (either public or private) is limited which may increase the health risks associated with heat.

Created2016
167589-Thumbnail Image.png
Description

BACKGROUND: The City of Phoenix initiated the HeatReady program in 2018 to prepare for extreme heat, as there was no official tool, framework, or mechanism at the city level to manage extreme heat. The current landscape of heat safety culture in schools, which are critical community hubs, has received less

BACKGROUND: The City of Phoenix initiated the HeatReady program in 2018 to prepare for extreme heat, as there was no official tool, framework, or mechanism at the city level to manage extreme heat. The current landscape of heat safety culture in schools, which are critical community hubs, has received less illumination. HeatReady Schools—a critical component of a HeatReady City—are those that are increasingly able to identify, prepare for, mitigate, track, and respond to the negative impacts of schoolgrounds heat. However, minimal attention has been given to formalize heat preparedness in schools to mitigate high temperatures and health concerns in schoolchildren, a heat-vulnerable population. This study set out to understand heat perceptions, (re)actions, and recommendations of key stakeholders and to identify critical themes around heat readiness. METHODS: An exploratory sequential mixed-methods case study approach was used. These methods focused on acquiring new insight on heat perceptions at elementary schools through semi-structured interviews using thematic analysis and the Delphi panel. Participants included public health professionals and school community members at two elementary schools—one public charter, one public—in South Phoenix, Arizona, a region that has been burdened historically with inequitable distribution of heat resources due to environmental racism and injustices. RESULTS: Findings demonstrated that 1) current heat safety resources are available but not fully utilized within the school sites, 2) expert opinions support that extreme heat readiness plans must account for site-specific needs, particularly education as a first step, and 3) students are negatively impacted by the effects of extreme heat, whether direct or indirect, both inside and outside the classroom. CONCLUSIONS: From key informant interviews and a Delphi panel, a list of 30 final recommendations were developed as important actions to be taken to become “HeatReady.” Future work will apply these recommendations in a HeatReady School Growth Tool that schools can tailor be to their individual needs to improve heat safety and protection measures at schools.

ContributorsShortridge, Adora (Author) / Walker, William VI (Author) / White, Dave (Committee member) / Guardaro, Melissa (Committee member) / Hondula, David M. (Committee member) / Vanos, Jennifer (Committee member) / School of Sustainability (Contributor)
Created2022-04-18
162992-Thumbnail Image.png
Description

According to the Centers for Disease Control and Prevention (CDC), more people die in the U.S. from heat than from all other natural disasters combined. According to the Environmental Protection Agency (EPA), more than 1,300 deaths per year in the United States are due to extreme heat. Arizona, California and

According to the Centers for Disease Control and Prevention (CDC), more people die in the U.S. from heat than from all other natural disasters combined. According to the Environmental Protection Agency (EPA), more than 1,300 deaths per year in the United States are due to extreme heat. Arizona, California and Texas are the three states with the highest burden, accounting for 43% of all heat-related deaths according to the CDC.

Although only 5% of housing in Maricopa County, Arizona, is mobile homes, approximately 30% of indoor heat-related deaths occur in these homes. Thus, the residents of mobile homes in Maricopa County are disproportionately affected by heat. Mobile home residents are extremely exposed to heat due to the high density of mobile home parks, poor construction of dwellings, lack of vegetation, socio-demographic features and not being eligible to get utility and financial assistance.

We researched numerous solutions across different domains that could help build the heat resilience of mobile home residents. As a result we found 50 different solutions for diverse stakeholders, budgets and available resources. The goal of this toolbox is to present these solutions and to explain how to apply them in order to get the most optimal result and build About this Solutions Guide People who live in mobile homes are 6 to 8 times more likely to die of heat-associated deaths. heat resilience for mobile home residents. These solutions were designed as a coordinated set of actions for everyone — individual households, mobile home residents, mobile home park owners, cities and counties, private businesses and nonprofits serving mobile home parks, and other stakeholders — to be able to contribute to heat mitigation for mobile home residents.

When we invest in a collective, coordinated suite of solutions that are designed specifically to address the heat vulnerability of mobile homes residents, we can realize a resilience dividend in maintaining affordable, feasible, liveable housing for the 20 million Americans who choose mobile homes and manufactured housing as their place to live and thrive.

ContributorsVarfalameyeva, Katsiaryna (Author) / Solís, Patricia (Author) / Phillips, Lora A. (Author) / Charley, Elisha (Author) / Hondula, David M. (Author) / Kear, Mark (Author)
Created2021
157538-Thumbnail Image.png
Description

Many coastal cities around the world are becoming increasingly vulnerable to natural disasters, particularly flooding driven by tropical storm and hurricane storm surge – typically the most destructive feature of these storms, generating significant economic damage and loss of life. This increase in vulnerability is driven by the interactions between

Many coastal cities around the world are becoming increasingly vulnerable to natural disasters, particularly flooding driven by tropical storm and hurricane storm surge – typically the most destructive feature of these storms, generating significant economic damage and loss of life. This increase in vulnerability is driven by the interactions between a wide number of complex social and climatic factors, including population growth, irresponsible urban development, a decrease in essential service provision, sea level rise, and changing storm regimes. These issues are exacerbated by the short-term strategic planning that dominates political action and economic decision-making, resulting in many vulnerable coastal communities being particularly unprepared for large, infrequent storm surge events. This lack of preparedness manifests in several ways, but one of the most visible is the lack of comprehensive evacuation and rescue operation plans for use after major storm surge flooding occurs. Typical evacuation or rescue plans are built using a model of a region’s intact road network. While useful for pre-disaster purposes, the immediate aftermath of large floods sees enormous swaths of a given region’s road system flooded, rendering most of these plans largely useless. Post-storm evacuation and rescue requires large amounts of atypical travel through a region (i.e., across non-road surfaces). Traditional road network models (such as those that are used to generate evacuation routes) are unable to conceptualize this type of transportation, and so are of limited utility during post-disaster scenarios. To solve these problems, this dissertation introduces an alternative network conceptualization that preserves important on-network information but also accounts for the possibility of off-network travel during a disaster. Providing this in situ context is necessary to adequately model transportation through a post-storm landscape, one in which evacuees and rescuers are regularly departing from roads and one in which many roads are completely interdicted by flooding. This modeling approach is used to automatically generate routes through a flooded coastal urban area, as well as to identify potentially critical road segments in advance of an actual storm. These tools may help both emergency managers better prepare for large storms, and urban planners in their efforts to mitigate flood damage.

ContributorsHelderop, Edward (Author) / Grubesic, Tony H. (Thesis advisor) / Kuby, Mike (Committee member) / Hondula, David M. (Committee member) / Arizona State University (Publisher)
Created2019
187517-Thumbnail Image.png
Description
ABSTRACTEffective policy development will be critical to address educational challenges within the Global South. To accelerate economic, political, and social goals, the Global South is under increasing pressure to mimic policy development from other countries. In 2016, the Liberian Ministry of Education leveraged policy transfer to address systemic primary education

ABSTRACTEffective policy development will be critical to address educational challenges within the Global South. To accelerate economic, political, and social goals, the Global South is under increasing pressure to mimic policy development from other countries. In 2016, the Liberian Ministry of Education leveraged policy transfer to address systemic primary education challenges. Originally known as Partnership Schools for Liberia (PSL) and later renamed the Liberian Education Advancement Program (LEAP), the education policy outsourced the management of primary schools through a public private partnership inclusive of eight organizations. As part of the pilot, 185 schools were randomly selected in the policy pilot; 93 operating under the new public private partnership and 92 remaining under government operations. However, the sample schools did not represent the country. Rather, LEAP schools were selected based on infrastructure standards, proximity to major roads, and cell phone capabilities. This research creates a new conceptual framework related to education borrowing, incorporating existing theories and new concepts into a single explanatory mixed-methods case study design. It aims to examine stakeholders in the education borrowing process, factors influencing the adoption of LEAP, and the process of establishing policy transfer. The research also explores whether differences exist in education access, the availability of information and communication technologies, and education quality between LEAP and non-LEAP schools. The quantitative component of the research includes secondary data analysis, through semi-structured interviews with 19 participants with direct knowledge and experience related to LEAP. The quantitative approach utilizes Pearson’s Chi-Square Test for Independence, Fisher’s Exact Test, and independent sample t-tests. The qualitative component of the research employs Braun and Clarke’s (2006) thematic framework to analyze the process components of policy transfer. The findings suggest improvements in some elements of education, support existing research on education borrowing, and notes persistent challenges in these areas and the cultivation of new obstacles due to LEAP. Through the addition of new conceptual and contextual research, the study contributes new knowledge to global development and intersecting disciplines regarding how countries like Liberia navigate the successes and challenges of education borrowing. Keywords: Global South, Liberia, policy transfer, education borrowing, and primary education
ContributorsKaloostian, Damita (Author) / Chhetri, Nalini (Thesis advisor) / Chhetri, Netra (Committee member) / Pippin, James (Committee member) / Hanson-DeFusco, Jessi (Committee member) / Arizona State University (Publisher)
Created2023
171906-Thumbnail Image.png
Description
Infrastructure systems are facing non-stationary challenges that stem from climate change and the increasingly complex interactions between the social, ecological, and technological systems (SETSs). It is crucial for transportation infrastructures—which enable residents to access opportunities and foster prosperity, quality of life, and social connections—to be resilient under these non-stationary challenges.

Infrastructure systems are facing non-stationary challenges that stem from climate change and the increasingly complex interactions between the social, ecological, and technological systems (SETSs). It is crucial for transportation infrastructures—which enable residents to access opportunities and foster prosperity, quality of life, and social connections—to be resilient under these non-stationary challenges. Vulnerability assessment (VA) examines the potential consequences a system is likely to experience due to exposure to perturbation or stressors and lack of the capacity to adapt. Post-fire debris flow and heat represent particularly challenging problems for infrastructure and users in the arid U.S. West. Post-fire debris flow, which is manifested with heat and drought, produces powerful runoff threatening physical transportation infrastructures. And heat waves have devastating health effects on transportation infrastructure users, including increased mortality rates. VA anticipates the potential consequences of these perturbations and enables infrastructure stakeholders to improve the system's resilience. The current transportation climate VA—which only considers a single direct climate stressor on the infrastructure—falls short of addressing the wildfire and heat challenges. This work proposes advanced transportation climate VA methods to address the complex and multiple climate stressors and the vulnerability of infrastructure users. Two specific regions were chosen to carry out the progressive transportation climate VA: 1) the California transportation networks’ vulnerability to post-fire debris flows, and 2) the transportation infrastructure user’s vulnerability to heat exposure in Phoenix.
ContributorsLi, Rui (Author) / Chester, Mikhail V. (Thesis advisor) / Middel, Ariane (Committee member) / Hondula, David M. (Committee member) / Pendyala, Ram (Committee member) / Arizona State University (Publisher)
Created2022
171703-Thumbnail Image.png
Description
The crafting of cultural goods and ethnic arts have been stable means for making a living within many Indigenous communities throughout the world. In order to understand how crafting can be an avenue towards sustainable entrepreneurship, an analysis of the relationships between Indigenous crafting, Indigenous community life, sustainable agency, Indigenous

The crafting of cultural goods and ethnic arts have been stable means for making a living within many Indigenous communities throughout the world. In order to understand how crafting can be an avenue towards sustainable entrepreneurship, an analysis of the relationships between Indigenous crafting, Indigenous community life, sustainable agency, Indigenous concepts of wellbeing, and sustainable entrepreneurship is needed. Through three-papers focused on an extensive literature review (aggregate to all three papers) and ethnographic field research (semi-structured interviews, verbal surveys, and ethnographic observation) this dissertation examines how the act of Indigenous crafting as carried out by individuals within families and by families within Indigenous communities, link with social relationships, making a living, gender roles, and cultural identity and how these aspects of community life intersect with sustainable forms of agency, Indigenous concepts of wellbeing, and small-scale social entrepreneurial activities in the context of Indigenous crafting in a bid to indigenize the concept of sustainable entrepreneurship. This dissertation proposes a series of conceptual frameworks that depict the discussed linkages between Indigenous crafting, Indigenous community life, sustainable forms of agency, sustainable livelihood, and Indigenous concepts of wellbeing, in the context of sustainable entrepreneurship along with the relevant literature associated with each element in the frameworks. This dissertation draws from a qualitative ethnographic study on Mazahua artisans and their communities in Mexico in an attempt to understand and expand sustainable entrepreneurship from Euro-Western perspectives to Indigenous perspectives in order to better apply SE concepts in the development of an Indigenous fashion goods venture called Vitu™. This Indigenous venture, through the Indigenized sustainable entrepreneurship concept of Adaptive-Transformative Agency, will more deeply address justice, equity, and inclusion for Indigenous peoples and their communities pursuing community development through entrepreneurial activities.
ContributorsTakamura, John Hiroomi (Author) / BurnSilver, Shauna (Thesis advisor) / Manuel-Navarrete, David (Thesis advisor) / Chhetri, Nalini (Committee member) / Arizona State University (Publisher)
Created2022