Matching Items (247)
137335-Thumbnail Image.png
Description
ABSTRACT Water and energy resources are intrinsically linked, yet they are managed separately even in the water scarce America southwest. This study develops a spatially explicit model of water energy inter-dependencies in Arizona and assesses the potential for co beneficial conservation programs. The interdependent benefits of investments in 8 conservation

ABSTRACT Water and energy resources are intrinsically linked, yet they are managed separately even in the water scarce America southwest. This study develops a spatially explicit model of water energy inter-dependencies in Arizona and assesses the potential for co beneficial conservation programs. The interdependent benefits of investments in 8 conservation strategies are assessed within the context of legislated renewable energy portfolio and energy efficiency standards. The co- benefits of conservation are found to be significant. Water conservation policies have the potential to reduce statewide electricity demand by 1.0 - 3.0 %, satisfying 3.3 -10 % of the state's mandated energy-efficiency-standard. Adoption of energy -efficiency measures and renewable generation portfolios can reduce non - agricultural water demand by 2.3 - 12 %. The conservation co- benefits are typically not included in conservation plans or benefit cost analyses. Many co-benefits offer negative costs of saved water and energy, indicating that these measures provide water and energy savings at no net cost. Because ranges of costs and savings for water energy conservation measures are somewhat uncertain, future studies should investigate the co-benefits of individual conservation strategies in detail. Although this study focuses on Arizona, the analysis can be extended elsewhere as renewable portfolio and energy efficiency standards become more common nationally and internationally.
ContributorsBartos, Matthew D. (Author) / Chester, Mikhail (Thesis director) / Mays, Larry (Committee member) / Barrett, The Honors College (Contributor)
Created2013-12
137517-Thumbnail Image.png
Description
Transit-oriented developments (TODs) are a promising strategy to increase public transit use and, as a result, reduce personal car travel. By using TOD infill to increase urban population density and encourage transportation mode-shifting, the potential exists to reduce life-cycle per capita energy use and environmental impacts of the interdependent infrastructure

Transit-oriented developments (TODs) are a promising strategy to increase public transit use and, as a result, reduce personal car travel. By using TOD infill to increase urban population density and encourage transportation mode-shifting, the potential exists to reduce life-cycle per capita energy use and environmental impacts of the interdependent infrastructure systems. This project specifically examined the Gold Line of light rail and Orange Line of bus rapid transit in Los Angeles, CA.
ContributorsNahlik, Matthew John (Author) / Chester, Mikhail (Thesis director) / Pendyala, Ram (Committee member) / Pincetl, Stephanie (Committee member) / Civil, Environmental and Sustainable Engineering Programs (Contributor) / Barrett, The Honors College (Contributor) / School of Sustainability (Contributor)
Created2013-05
141391-Thumbnail Image.png
Description

Rapid urbanization of the planet is occurring at an unprecedented pace, primarily in arid and semi-arid hot climates [Golden, J.S., 2004. The built environment induced urban heat island effect in rapidly urbanizing arid regions – a sustainable urban engineering complexity. Environ. Sci. J. Integr. Environ. Res. 1 (4), 321–349]. This

Rapid urbanization of the planet is occurring at an unprecedented pace, primarily in arid and semi-arid hot climates [Golden, J.S., 2004. The built environment induced urban heat island effect in rapidly urbanizing arid regions – a sustainable urban engineering complexity. Environ. Sci. J. Integr. Environ. Res. 1 (4), 321–349]. This growth has manifested itself as a cause of various impacts including elevated urban temperatures in comparison to rural sites known as the Urban Heat Island (UHI) effect [Oke, T.R., 1982. The energetic basis of the urban heat island. Q. J. R. Meteor. Soc. 108, 1–24]. Related are the increased demands for electric power as a result of population growth and increased need for mechanical cooling due to the UHI. In the United States, the Environmental Protection Agency has developed a three-prong approach of (1) cool pavements, (2) urban forestry and (3) cool roofs to mitigate the UHI. Researchers undertook an examination of micro scale benefits of the utilization of photovoltaic panels to reduce the thermal impacts to surface temperatures of pavements in comparison to urban forestry. The results of the research indicate that photovoltaic panels provide a greater thermal reduction benefit during the diurnal cycle in comparison to urban forestry while also providing the additional benefits of supporting peak energy demand, conserving water resources and utilizing a renewable energy source.

ContributorsGolden, Jay S. (Author) / Carlson, Joby (Author) / Kaloush, Kamil (Author) / Phelan, Patrick (Author)
Created2006-12-26
141440-Thumbnail Image.png
Description

Engineered pavements cover a large fraction of cities and offer significant potential for urban heat island mitigation. Though rapidly increasing research efforts have been devoted to the study of pavement materials, thermal interactions between buildings and the ambient environment are mostly neglected. In this study, numerical models featuring a realistic

Engineered pavements cover a large fraction of cities and offer significant potential for urban heat island mitigation. Though rapidly increasing research efforts have been devoted to the study of pavement materials, thermal interactions between buildings and the ambient environment are mostly neglected. In this study, numerical models featuring a realistic representation of building-environment thermal interactions, were applied to quantify the effect of pavements on the urban thermal environment at multiple scales. It was found that performance of pavements inside the canyon was largely determined by the canyon geometry. In a high-density residential area, modifying pavements had insignificant effect on the wall temperature and building energy consumption. At a regional scale, various pavement types were also found to have a limited cooling effect on land surface temperature and 2-m air temperature for metropolitan Phoenix. In the context of global climate change, the effect of pavement was evaluated in terms of the equivalent CO2 emission. Equivalent CO2 emission offset by reflective pavements in urban canyons was only about 13.9e46.6% of that without building canopies, depending on the canyon geometry. This study revealed the importance of building-environment thermal interactions in determining thermal conditions inside the urban canopy.

ContributorsYang, Jiachuan (Author) / Wang, Zhi-Hua (Author) / Kaloush, Kamil (Author) / Dylla, Heather (Author)
Created2016-08-22
149502-Thumbnail Image.png
Description
Oxidative aging is an important factor in the long term performance of asphalt pavements. Oxidation and the associated stiffening can lead to cracking, which in turn can lead to the functional and structural failure of the pavement system. Therefore, a greater understanding of the nature of oxidative aging in asphalt

Oxidative aging is an important factor in the long term performance of asphalt pavements. Oxidation and the associated stiffening can lead to cracking, which in turn can lead to the functional and structural failure of the pavement system. Therefore, a greater understanding of the nature of oxidative aging in asphalt pavements can potentially be of great importance in estimating the performance of a pavement before it is constructed. Of particular interest are the effects of aging on asphalt rubber pavements, due to the fact that, as a newer technology, few asphalt rubber pavement sections have been evaluated for their full service life. This study endeavors to shed some light on this topic. This study includes three experimental programs on the aging of asphalt rubber binders and mixtures. The first phase addresses aging in asphalt rubber binders and their virgin bases. The binders were subjected to various aging conditions and then tested for viscosity. The change in viscosity was analyzed and it was found that asphalt rubber binders exhibited less long term aging. The second phase looks at aging in a laboratory environment, including both a comparison of accelerated oxidative aging techniques and aging effects that occur during long term storage. Dynamic modulus was used as a tool to assess the aging of the tested materials. It was found that aging materials in a compacted state is ideal, while aging in a loose state is unrealistic. Results not only showed a clear distinction in aged versus unaged material but also showed that the effects of aging on AR mixes is highly dependant on temperature; lower temperatures induce relatively minor stiffening while higher temperatures promote much more significant aging effects. The third experimental program is a field study that builds upon a previous study of pavement test sections. Field pavement samples were taken and tested after being in service for 7 years and tested for dynamic modulus and beam fatigue. As with the laboratory aging, the dynamic modulus samples show less stiffening at low temperatures and more at higher temperatures. Beam fatigue testing showed not only stiffening but also a brittle behavior.
ContributorsReed, Jordan (Author) / Kaloush, Kamil (Thesis advisor) / Mamlouk, Michael (Committee member) / Zapata, Claudia (Committee member) / Arizona State University (Publisher)
Created2010
149519-Thumbnail Image.png
Description
In the middle of the 20th century in the United States, transportation and infrastructure development became a priority on the national agenda, instigating the development of mathematical models that would predict transportation network performance. Approximately 40 years later, transportation planning models again became a national priority, this time instigating the

In the middle of the 20th century in the United States, transportation and infrastructure development became a priority on the national agenda, instigating the development of mathematical models that would predict transportation network performance. Approximately 40 years later, transportation planning models again became a national priority, this time instigating the development of highly disaggregate activity-based traffic models called microsimulations. These models predict the travel on a network at the level of the individual decision-maker, but do so with a large computational complexity and processing time requirement. The vast resources and steep learning curve required to integrate microsimulation models into the general transportation plan have deterred planning agencies from incorporating these tools. By researching the stochastic variability in the results of a microsimulation model with varying random number seeds, this paper evaluates the number of simulation trials necessary, and therefore the computational effort, for a planning agency to reach stable model outcomes. The microsimulation tool used to complete this research is the Transportation Analysis and Simulation System (TRANSIMS). The requirements for initiating a TRANSIMS simulation are described in the paper. Two analysis corridors are chosen in the Metropolitan Phoenix Area, and the roadway performance characteristics volume, vehicle-miles of travel, and vehicle-hours of travel are examined in each corridor under both congested and uncongested conditions. Both congested and uncongested simulations are completed in twenty trials, each with a unique random number seed. Performance measures are averaged for each trial, providing a distribution of average performance measures with which to test the stability of the system. The results of this research show that the variability in outcomes increases with increasing congestion. Although twenty trials are sufficient to achieve stable solutions for the uncongested state, convergence in the congested state is not achieved. These results indicate that a highly congested urban environment requires more than twenty simulation runs for each tested scenario before reaching a solution that can be assumed to be stable. The computational effort needed for this type of analysis is something that transportation planning agencies should take into consideration before beginning a traffic microsimulation program.
ContributorsZiems, Sarah Elia (Author) / Pendyala, Ram M. (Thesis advisor) / Ahn, Soyoung (Committee member) / Kaloush, Kamil (Committee member) / Arizona State University (Publisher)
Created2010
148448-Thumbnail Image.png
Description

This paper discusses the theoretical approximation and attempted measurement of the quantum <br/>force produced by material interactions though the use of a tuning fork-based atomic force microscopy <br/>device. This device was built and orientated specifically for the measurement of the Casimir force as a <br/>function of separation distance using a

This paper discusses the theoretical approximation and attempted measurement of the quantum <br/>force produced by material interactions though the use of a tuning fork-based atomic force microscopy <br/>device. This device was built and orientated specifically for the measurement of the Casimir force as a <br/>function of separation distance using a piezo actuator for approaching and a micro tuning fork for the <br/>force measurement. This project proceeds with an experimental measurement of the ambient Casmir force <br/>through the use of a tuning fork-based AFM to determine its viability in measuring the magnitude of the <br/>force interaction between an interface material and the tuning fork probe. The ambient measurements <br/>taken during the device’s development displayed results consistent with theoretical approximations, while<br/>demonstrating the capability to perform high-precision force measurements. The experimental results<br/>concluded in a successful development of a device which has the potential to measure forces of <br/>magnitude 10−6 to 10−9 at nanometric gaps. To conclude, a path to material analysis using an approach <br/>stage, alternative methods of testing, and potential future experiments are speculated upon.

ContributorsMulkern, William Michael (Author) / Wang, Liping (Thesis director) / Kwon, Beomjin (Committee member) / Mechanical and Aerospace Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
148495-Thumbnail Image.png
Description

This paper investigates near-field thermal radiation as the primary source of heat transfer between two parallel surfaces. This radiation takes place extremely close to the heated surfaces in study so the experimental set-up to be used will be done at the nanometer scale. The primary theory being investigated is that

This paper investigates near-field thermal radiation as the primary source of heat transfer between two parallel surfaces. This radiation takes place extremely close to the heated surfaces in study so the experimental set-up to be used will be done at the nanometer scale. The primary theory being investigated is that near-field radiation generates greater heat flux that conventional radiation governed by Planck’s law with maximum for blackbodies. Working with a phase shift material such as VO2 enables a switch-like effect to occur where the total amount of heat flux fluctuates as VO2 transitions from a metal to an insulator. In this paper, the theoretical heat flux and near-field radiation effect are modeled for a set-up of VO2 and SiO2 layers separated by different vacuum gaps. In addition, a physical experimental set-up is validated for future near-field radiation experiments.

ContributorsSluder, Nicole (Author) / Wang, Liping (Thesis director) / Wang, Ropert (Committee member) / Mechanical and Aerospace Engineering Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
149462-Thumbnail Image.png
Description
Rapid developments are occurring in the arena of activity-based microsimulation models. Advances in computational power, econometric methodologies and data collection have all contributed to the development of microsimulation tools for planning applications. There has also been interest in modeling child daily activity-travel patterns and their influence on those of adults

Rapid developments are occurring in the arena of activity-based microsimulation models. Advances in computational power, econometric methodologies and data collection have all contributed to the development of microsimulation tools for planning applications. There has also been interest in modeling child daily activity-travel patterns and their influence on those of adults in the household using activity-based microsimulation tools. It is conceivable that most of the children are largely dependent on adults for their activity engagement and travel needs and hence would have considerable influence on the activity-travel schedules of adult members in the household. In this context, a detailed comparison of various activity-travel characteristics of adults in households with and without children is made using the National Household Travel Survey (NHTS) data. The analysis is used to quantify and decipher the nature of the impact of activities of children on the daily activity-travel patterns of adults. It is found that adults in households with children make a significantly higher proportion of high occupancy vehicle (HOV) trips and lower proportion of single occupancy vehicle (SOV) trips when compared to those in households without children. They also engage in more serve passenger activities and fewer personal business, shopping and social activities. A framework for modeling activities and travel of dependent children is proposed. The framework consists of six sub-models to simulate the choice of going to school/pre-school on a travel day, the dependency status of the child, the activity type, the destination, the activity duration, and the joint activity engagement with an accompanying adult. Econometric formulations such as binary probit and multinomial logit are used to obtain behaviorally intuitive models that predict children's activity skeletons. The model framework is tested using a 5% sample of a synthetic population of children for Maricopa County, Arizona and the resulting patterns are validated against those found in NHTS data. Microsimulation of these dependencies of children can be used to constrain the adult daily activity schedules. The deployment of this framework prior to the simulation of adult non-mandatory activities is expected to significantly enhance the representation of the interactions between children and adults in activity-based microsimulation models.
ContributorsSana, Bhargava (Author) / Pendyala, Ram M. (Thesis advisor) / Ahn, Soyoung (Committee member) / Kaloush, Kamil (Committee member) / Arizona State University (Publisher)
Created2010
Description
Asphalt pavements deteriorate over time and are subjected to various distresses like rutting, fatigue cracking, stripping, raveling, etc. In this study, an experiment to indirectly assess aggregate stripping was completed in order to evaluate the effect of type of binder, and aging on the binder-aggregate bond under dry conditioning. The

Asphalt pavements deteriorate over time and are subjected to various distresses like rutting, fatigue cracking, stripping, raveling, etc. In this study, an experiment to indirectly assess aggregate stripping was completed in order to evaluate the effect of type of binder, and aging on the binder-aggregate bond under dry conditioning. The asphalts used in the study are commonly used in the state of Arizona, which included both non-polymer modified and polymer modified asphalts. The phenomenon of stripping was simulated using the Bitumen Bond Strength Test (BBS) and evaluated for Arizona binders. The BBS test is a simple test that measures the "pull-off" tensile strength of the bond between asphalt and the aggregate. Polymer modified binders were found to have lower pull-off strength in comparison to the non-modified or neat binder which were found to possess greater pull-off strength, but lower elasticity, causing the failure to become brittle and spontaneous. However, when aged binder was used, the bond strength expectedly reduced for non-polymer modified asphalts but surprisingly increased for polymer modified asphalts. Both un-aged neat and polymer modified binders were observed to have a cohesive failure whereas only the aged polymer modified binders failed in cohesion. The aged non-polymer modified binders were seen to have an adhesive failure.
ContributorsPonce, Esai Jonathon (Author) / Kaloush, Kamil (Thesis director) / Gundla, Akshay (Committee member) / Civil, Environmental and Sustainable Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05