Matching Items (47)
161899-Thumbnail Image.png
Description
Wide bandgap semiconductors, also known as WBG semiconductors are materials which have larger bandgaps than conventional semiconductors such as Si or GaAs. They permit devices to operate at much higher voltages, frequencies and temperatures. They are the key material used to make LEDs, lasers, radio frequency applications, military applications, and

Wide bandgap semiconductors, also known as WBG semiconductors are materials which have larger bandgaps than conventional semiconductors such as Si or GaAs. They permit devices to operate at much higher voltages, frequencies and temperatures. They are the key material used to make LEDs, lasers, radio frequency applications, military applications, and power electronics. Their intrinsic qualities make them promising for next-generation devices for general semiconductor use. Their ability to handle higher power density is particularly attractive for attempts to sustain Moore's law, as conventional technologies appear to be reaching a bottleneck. Apart from WBG materials, ultra-wide bandgap (UWBG) materials, such as Ga2O3, AlN, diamond, or BN, are also attractive since they have even more extreme properties. Although this field is relatively new, which still remains a lot of effort to study and investigate, people can still expect that these materials could be the main characters for more advanced applications in the near future. In the dissertation, three topics with power devices made by WBG or UWBG semiconductors were introduced. In chapter 1, a generally background knowledge introduction is given. This helps the reader to learn current research focuses. In chapter 2, a comprehensive study of temperature-dependent characteristics of Ga2O3 SBDs with highly-doped substrate is demonstrated. A modified thermionic emission model over an inhomogeneous barrier with a voltage-dependent barrier height is investigated. Besides, the mechanism of surface leakage current is also discussed. These results are beneficial for future developments of low-loss β-Ga2O3 electronics and optoelectronics. In chapter 3, vertical GaN Schottky barrier diodes (SBDs) with floating metal rings (FMRs) as edge termination structures on bulk GaN substrates was introduced. This work represents a useful reference for the FMR termination design for GaN power devices. In chapter 4, AlGaN/GaN metal-insulator-semiconductor high electron mobility transistors (MISHEMTs) fabricated on Si substrates with a 10 nm boron nitride (BN) layer as gate dielectric was demonstrated. The material characterization was investigated by X-ray photoelectric spectroscopy (XPS) and UV photoelectron spectroscopy (UPS). And the gate leakage current mechanisms were also investigated by temperature-dependent current-voltage measurements. Although still in its infancy, past and projected future progress of electronic designs will ultimately achieve this very goal that WBG and UWBG semiconductors will be indispensable for today and future’s science, technologies and society.
ContributorsYang, Tsung-Han (Author) / Zhao, Yuji (Thesis advisor) / Vasileska, Dragica (Committee member) / Yu, Hongbin (Committee member) / Nemanich, Robert (Committee member) / Arizona State University (Publisher)
Created2021
161443-Thumbnail Image.png
Description
Wide bandgap semiconductors are of much current interest due to their superior electrical properties. This dissertation describes electron microscopy characterization of GaN-on-GaN structures for high-power vertical device applications. Unintentionally-doped (UID) GaN layers grown homoepitaxially via metal-organic chemical vapor deposition on freestanding GaN substrates, were subjected to dry etching, and layers

Wide bandgap semiconductors are of much current interest due to their superior electrical properties. This dissertation describes electron microscopy characterization of GaN-on-GaN structures for high-power vertical device applications. Unintentionally-doped (UID) GaN layers grown homoepitaxially via metal-organic chemical vapor deposition on freestanding GaN substrates, were subjected to dry etching, and layers of UID-GaN/p-GaN were over-grown. The as-grown and regrown heterostructures were examined in cross-section using transmission electron microscopy (TEM). Two different etching treatments, fast-etch-only and multiple etches with decreasing power, were employed. The fast-etch-only devices showed GaN-on-GaN interface at etched location, and low device breakdown voltages were measured (~ 45-95V). In comparison, no interfaces were visible after multiple etching steps, and the corresponding breakdown voltages were much higher (~1200-1270V). These results emphasized importance of optimizing surface etching techniques for avoiding degraded device performance. The morphology of GaN-on-GaN devices after reverse-bias electrical stressing to breakdown was investigated. All failed devices had irreversible structural damage, showing large surface craters (~15-35 microns deep) with lengthy surface cracks. Cross-sectional TEM of failed devices showed high densities of threading dislocations (TDs) around the cracks and near crater surfaces. Progressive ion-milling across damaged devices revealed high densities of TDs and the presence of voids beneath cracks: these features were not observed in unstressed devices. The morphology of GaN substrates grown by hydride vapor-phase epitaxy (HVPE) and by ammonothermal methods were correlated with reverse-bias results. HVPE substrates showed arrays of surface features when observed by X-ray topography (XRT). All fabricated devices that overlapped with these features had typical reverse-bias voltages less than 100V at a leakage current limit of 10-6 A. In contrast, devices not overlapping with such features reached voltages greater than 300V. After etching, HVPE substrate surfaces showed defect clusters and macro-pits, whereas XRT images of ammonothermal substrate revealed no visible features. However, some devices fabricated on ammonothermal substrate failed at low voltages. Devices on HVPE and ammonothermal substrates with low breakdown voltages showed crater-like surface damage and revealed TDs (~25µm deep) and voids; such features were not observed in devices reaching higher voltages. These results should assist in developing protocols to fabricate reliable high-voltage devices.
ContributorsPeri, Prudhvi Ram (Author) / Smith, David J. (Thesis advisor) / Alford, Terry (Committee member) / Mccartney, Martha R (Committee member) / Nemanich, Robert (Committee member) / Zhao, Yuji (Committee member) / Arizona State University (Publisher)
Created2021
Description

Photosynthesis, a process catalysed by plants, algae and cyanobacteria converts sunlight to energy thus sustaining all higher life on Earth. Two large membrane protein complexes, photosystem I and II (PSI and PSII), act in series to catalyse the light-driven reactions in photosynthesis. PSII catalyses the light-driven water splitting process, which

Photosynthesis, a process catalysed by plants, algae and cyanobacteria converts sunlight to energy thus sustaining all higher life on Earth. Two large membrane protein complexes, photosystem I and II (PSI and PSII), act in series to catalyse the light-driven reactions in photosynthesis. PSII catalyses the light-driven water splitting process, which maintains the Earth’s oxygenic atmosphere. In this process, the oxygen-evolving complex (OEC) of PSII cycles through five states, S0 to S4, in which four electrons are sequentially extracted from the OEC in four light-driven charge-separation events. Here we describe time resolved experiments on PSII nano/microcrystals from Thermosynechococcus elongatus performed with the recently developed technique of serial femtosecond crystallography. Structures have been determined from PSII in the dark S1 state and after double laser excitation (putative S3 state) at 5 and 5.5 Å resolution, respectively. The results provide evidence that PSII undergoes significant conformational changes at the electron acceptor side and at the Mn4CaO5 core of the OEC. These include an elongation of the metal cluster, accompanied by changes in the protein environment, which could allow for binding of the second substrate water molecule between the more distant protruding Mn (referred to as the ‘dangler’ Mn) and the Mn3CaOx cubane in the S2 to S3 transition, as predicted by spectroscopic and computational studies. This work shows the great potential for time-resolved serial femtosecond crystallography for investigation of catalytic processes in biomolecules.

ContributorsKupitz, Christopher (Author) / Basu, Shibom (Author) / Grotjohann, Ingo (Author) / Fromme, Raimund (Author) / Zatsepin, Nadia (Author) / Rendek, Kimberly (Author) / Hunter, Mark (Author) / Shoeman, Robert L. (Author) / White, Thomas A. (Author) / Wang, Dingjie (Author) / James, Daniel (Author) / Yang, Jay-How (Author) / Cobb, Danielle (Author) / Reeder, Brenda (Author) / Sierra, Raymond G. (Author) / Liu, Haiguang (Author) / Barty, Anton (Author) / Aquila, Andrew L. (Author) / Deponte, Daniel (Author) / Kirian, Richard (Author) / Bari, Sadia (Author) / Bergkamp, Jesse (Author) / Beyerlein, Kenneth R. (Author) / Bogan, Michael J. (Author) / Caleman, Carl (Author) / Chao, Tzu-Chiao (Author) / Conrad, Chelsie (Author) / Davis, Katherine M. (Author) / Department of Chemistry and Biochemistry (Contributor)
Created2014-09-11
128362-Thumbnail Image.png
Description

The Smoothened receptor (SMO) belongs to the Class Frizzled of the G protein-coupled receptor (GPCR) superfamily, constituting a key component of the Hedgehog signalling pathway. Here we report the crystal structure of the multi-domain human SMO, bound and stabilized by a designed tool ligand TC114, using an X-ray free-electron laser

The Smoothened receptor (SMO) belongs to the Class Frizzled of the G protein-coupled receptor (GPCR) superfamily, constituting a key component of the Hedgehog signalling pathway. Here we report the crystal structure of the multi-domain human SMO, bound and stabilized by a designed tool ligand TC114, using an X-ray free-electron laser source at 2.9 Å. The structure reveals a precise arrangement of three distinct domains: a seven-transmembrane helices domain (TMD), a hinge domain (HD) and an intact extracellular cysteine-rich domain (CRD). This architecture enables allosteric interactions between the domains that are important for ligand recognition and receptor activation. By combining the structural data, molecular dynamics simulation, and hydrogen-deuterium-exchange analysis, we demonstrate that transmembrane helix VI, extracellular loop 3 and the HD play a central role in transmitting the signal employing a unique GPCR activation mechanism, distinct from other multi-domain GPCRs.

ContributorsZhang, Xianjun (Author) / Zhao, Fei (Author) / Wu, Yiran (Author) / Yang, Jun (Author) / Han, Gye Won (Author) / Zhao, Suwen (Author) / Ishchenko, Andrii (Author) / Ye, Lintao (Author) / Lin, Xi (Author) / Ding, Kang (Author) / Dharmarajan, Venkatasubramaniam (Author) / Griffin, Patrick R. (Author) / Gati, Cornelius (Author) / Nelson, Garrett (Author) / Hunter, Mark S. (Author) / Hanson, Michael A. (Author) / Cherezov, Vadim (Author) / Stevens, Raymond C. (Author) / Tan, Wenfu (Author) / Tao, Houchao (Author) / Xu, Fei (Author) / College of Liberal Arts and Sciences (Contributor)
Created2017-05-17
130279-Thumbnail Image.png
Description
Crystal structure determination of biological macromolecules using the novel technique of serial femtosecond crystallography (SFX) is severely limited by the scarcity of X-ray free-electron laser (XFEL) sources. However, recent and future upgrades render microfocus beamlines at synchrotron-radiation sources suitable for room-temperature serial crystallography data collection also. Owing to the longer

Crystal structure determination of biological macromolecules using the novel technique of serial femtosecond crystallography (SFX) is severely limited by the scarcity of X-ray free-electron laser (XFEL) sources. However, recent and future upgrades render microfocus beamlines at synchrotron-radiation sources suitable for room-temperature serial crystallography data collection also. Owing to the longer exposure times that are needed at synchrotrons, serial data collection is termed serial millisecond crystallography (SMX). As a result, the number of SMX experiments is growing rapidly, with a dozen experiments reported so far. Here, the first high-viscosity injector-based SMX experiments carried out at a US synchrotron source, the Advanced Photon Source (APS), are reported. Microcrystals (5–20 µm) of a wide variety of proteins, including lysozyme, thaumatin, phycocyanin, the human A[subscript 2A] adenosine receptor (A[subscript 2A]AR), the soluble fragment of the membrane lipoprotein Flpp3 and proteinase K, were screened. Crystals suspended in lipidic cubic phase (LCP) or a high-molecular-weight poly(ethylene oxide) (PEO; molecular weight 8 000 000) were delivered to the beam using a high-viscosity injector. In-house data-reduction (hit-finding) software developed at APS as well as the SFX data-reduction and analysis software suites Cheetah and CrystFEL enabled efficient on-site SMX data monitoring, reduction and processing. Complete data sets were collected for A[subscript 2A]AR, phycocyanin, Flpp3, proteinase K and lysozyme, and the structures of A[subscript 2A]AR, phycocyanin, proteinase K and lysozyme were determined at 3.2, 3.1, 2.65 and 2.05 Å resolution, respectively. The data demonstrate the feasibility of serial millisecond crystallography from 5–20 µm crystals using a high-viscosity injector at APS. The resolution of the crystal structures obtained in this study was dictated by the current flux density and crystal size, but upcoming developments in beamline optics and the planned APS-U upgrade will increase the intensity by two orders of magnitude. These developments will enable structure determination from smaller and/or weakly diffracting microcrystals.
ContributorsMartin Garcia, Jose Manuel (Author) / Conrad, Chelsie (Author) / Nelson, Garrett (Author) / Stander, Natasha (Author) / Zatsepin, Nadia (Author) / Zook, James (Author) / Zhu, Lan (Author) / Geiger, James (Author) / Chun, Eugene (Author) / Kissick, David (Author) / Hilgart, Mark C. (Author) / Ogata, Craig (Author) / Ishchenko, Andrii (Author) / Nagaratnam, Nirupa (Author) / Roy Chowdhury, Shatabdi (Author) / Coe, Jesse (Author) / Subramanian, Ganesh (Author) / Schaffer, Alexander (Author) / James, Daniel (Author) / Ketwala, Gihan (Author) / Venugopalan, Nagarajan (Author) / Xu, Shenglan (Author) / Corcoran, Stephen (Author) / Ferguson, Dale (Author) / Weierstall, Uwe (Author) / Spence, John (Author) / Cherezov, Vadim (Author) / Fromme, Petra (Author) / Fischetti, Robert F. (Author) / Liu, Wei (Author) / College of Liberal Arts and Sciences (Contributor) / School of Molecular Sciences (Contributor) / Biodesign Institute (Contributor) / Applied Structural Discovery (Contributor) / Department of Physics (Contributor)
Created2017-05-24
130284-Thumbnail Image.png
Description
CTB-MPR is a fusion protein between the B subunit of cholera toxin (CTB) and the membrane-proximal region of gp41 (MPR), the transmembrane envelope protein of Human immunodeficiency virus 1 (HIV-1), and has previously been shown to induce the production of anti-HIV-1 antibodies with antiviral functions. To further improve the design

CTB-MPR is a fusion protein between the B subunit of cholera toxin (CTB) and the membrane-proximal region of gp41 (MPR), the transmembrane envelope protein of Human immunodeficiency virus 1 (HIV-1), and has previously been shown to induce the production of anti-HIV-1 antibodies with antiviral functions. To further improve the design of this candidate vaccine, X-ray crystallography experiments were performed to obtain structural information about this fusion protein. Several variants of CTB-MPR were designed, constructed and recombinantly expressed in Escherichia coli. The first variant contained a flexible GPGP linker between CTB and MPR, and yielded crystals that diffracted to a resolution of 2.3 Å, but only the CTB region was detected in the electron-density map. A second variant, in which the CTB was directly attached to MPR, was shown to destabilize pentamer formation. A third construct containing a polyalanine linker between CTB and MPR proved to stabilize the pentameric form of the protein during purification. The purification procedure was shown to produce a homogeneously pure and monodisperse sample for crystallization. Initial crystallization experiments led to pseudo-crystals which were ordered in only two dimensions and were disordered in the third dimension. Nanocrystals obtained using the same precipitant showed promising X-ray diffraction to 5 Å resolution in femtosecond nanocrystallography experiments at the Linac Coherent Light Source at the SLAC National Accelerator Laboratory. The results demonstrate the utility of femtosecond X-ray crystallography to enable structural analysis based on nano/microcrystals of a protein for which no macroscopic crystals ordered in three dimensions have been observed before.
ContributorsLee, Ho-Hsien (Author) / Cherni, Irene (Author) / Yu, HongQi (Author) / Fromme, Raimund (Author) / Doran, Jeffrey (Author) / Grotjohann, Ingo (Author) / Mittman, Michele (Author) / Basu, Shibom (Author) / Deb, Arpan (Author) / Dorner, Katerina (Author) / Aquila, Andrew (Author) / Barty, Anton (Author) / Boutet, Sebastien (Author) / Chapman, Henry N. (Author) / Doak, R. Bruce (Author) / Hunter, Mark (Author) / James, Daniel (Author) / Kirian, Richard (Author) / Kupitz, Christopher (Author) / Lawrence, Robert (Author) / Liu, Haiguang (Author) / Nass, Karol (Author) / Schlichting, Ilme (Author) / Schmidt, Kevin (Author) / Seibert, M. Marvin (Author) / Shoeman, Robert L. (Author) / Spence, John (Author) / Stellato, Francesco (Author) / Weierstall, Uwe (Author) / Williams, Garth J. (Author) / Yoon, Chun Hong (Author) / Wang, Dingjie (Author) / Zatsepin, Nadia (Author) / Hogue, Brenda (Author) / Matoba, Nobuyuki (Author) / Fromme, Petra (Author) / Mor, Tsafrir (Author) / ASU Biodesign Center Immunotherapy, Vaccines and Virotherapy (Contributor) / Department of Chemistry and Biochemistry (Contributor) / College of Liberal Arts and Sciences (Contributor) / School of Life Sciences (Contributor) / Biodesign Institute (Contributor) / Infectious Diseases and Vaccinology (Contributor) / Department of Physics (Contributor)
Created2014-08-20
130301-Thumbnail Image.png
Description
Serial femtosecond crystallography (SFX) takes advantage of extremely bright and ultrashort pulses produced by x-ray free-electron lasers (XFELs), allowing for the collection of high-resolution diffraction intensities from micrometer-sized crystals at room temperature with minimal radiation damage, using the principle of “diffraction-before-destruction.” However, de novo structure factor phase determination using XFELs

Serial femtosecond crystallography (SFX) takes advantage of extremely bright and ultrashort pulses produced by x-ray free-electron lasers (XFELs), allowing for the collection of high-resolution diffraction intensities from micrometer-sized crystals at room temperature with minimal radiation damage, using the principle of “diffraction-before-destruction.” However, de novo structure factor phase determination using XFELs has been difficult so far. We demonstrate the ability to solve the crystallographic phase problem for SFX data collected with an XFEL using the anomalous signal from native sulfur atoms, leading to a bias-free room temperature structure of the human A[subscript 2A] adenosine receptor at 1.9 Å resolution. The advancement was made possible by recent improvements in SFX data analysis and the design of injectors and delivery media for streaming hydrated microcrystals. This general method should accelerate structural studies of novel difficult-to-crystallize macromolecules and their complexes.
ContributorsBatyuk, Alexander (Author) / Galli, Lorenzo (Author) / Ishchenko, Andrii (Author) / Han, Gye Won (Author) / Gati, Cornelius (Author) / Popov, Petr A. (Author) / Lee, Ming-Yue (Author) / Stauch, Benjamin (Author) / White, Thomas A. (Author) / Barty, Anton (Author) / Aquila, Andrew (Author) / Hunter, Mark S. (Author) / Liang, Mengning (Author) / Boutet, Sebastien (Author) / Pu, Mengchen (Author) / Liu, Zhi-jie (Author) / Nelson, Garrett (Author) / James, Daniel (Author) / Li, Chufeng (Author) / Zhao, Yun (Author) / Spence, John (Author) / Liu, Wei (Author) / Fromme, Petra (Author) / Katritch, Vsevolod (Author) / Weierstall, Uwe (Author) / Stevens, Raymond C. (Author) / Cherezov, Vadim (Author) / College of Liberal Arts and Sciences (Contributor) / Department of Physics (Contributor) / Biodesign Institute (Contributor) / Applied Structural Discovery (Contributor) / School of Molecular Sciences (Contributor)
Created2016-09-23
130302-Thumbnail Image.png
Description
Mix-and-inject serial crystallography (MISC) is a technique designed to image enzyme catalyzed reactions in which small protein crystals are mixed with a substrate just prior to being probed by an X-ray pulse. This approach offers several advantages over flow cell studies. It provides (i) room temperature structures at near atomic

Mix-and-inject serial crystallography (MISC) is a technique designed to image enzyme catalyzed reactions in which small protein crystals are mixed with a substrate just prior to being probed by an X-ray pulse. This approach offers several advantages over flow cell studies. It provides (i) room temperature structures at near atomic resolution, (ii) time resolution ranging from microseconds to seconds, and (iii) convenient reaction initiation. It outruns radiation damage by using femtosecond X-ray pulses allowing damage and chemistry to be separated. Here, we demonstrate that MISC is feasible at an X-ray free electron laser by studying the reaction of M. tuberculosis ß-lactamase microcrystals with ceftriaxone antibiotic solution. Electron density maps of the apo-ß-lactamase and of the ceftriaxone bound form were obtained at 2.8 Å and 2.4 Å resolution, respectively. These results pave the way to study cyclic and non-cyclic reactions and represent a new field of time-resolved structural dynamics for numerous substrate-triggered biological reactions.
ContributorsKupitz, Christopher (Author) / Olmos, Jose L. (Author) / Holl, Mark (Author) / Tremblay, Lee (Author) / Pande, Kanupriya (Author) / Pandey, Suraj (Author) / Oberthur, Dominik (Author) / Hunter, Mark (Author) / Liang, Mengning (Author) / Aquila, Andrew (Author) / Tenboer, Jason (Author) / Calvey, George (Author) / Katz, Andrea (Author) / Chen, Yujie (Author) / Wiedorn, Max O. (Author) / Knoska, Juraj (Author) / Meents, Alke (Author) / Majriani, Valerio (Author) / Norwood, Tyler (Author) / Poudyal, Ishwor (Author) / Grant, Thomas (Author) / Miller, Mitchell D. (Author) / Xu, Weijun (Author) / Tolstikova, Aleksandra (Author) / Morgan, Andrew (Author) / Metz, Markus (Author) / Martin Garcia, Jose Manuel (Author) / Zook, James (Author) / Roy Chowdhury, Shatabdi (Author) / Coe, Jesse (Author) / Nagaratnam, Nirupa (Author) / Meza-Aguilar, Domingo (Author) / Fromme, Raimund (Author) / Basu, Shibom (Author) / Frank, Matthias (Author) / White, Thomas (Author) / Barty, Anton (Author) / Bajt, Sasa (Author) / Yefanov, Oleksandr (Author) / Chapman, Henry N. (Author) / Zatsepin, Nadia (Author) / Nelson, Garrett (Author) / Weierstall, Uwe (Author) / Spence, John (Author) / Schwander, Peter (Author) / Pollack, Lois (Author) / Fromme, Petra (Author) / Ourmazd, Abbas (Author) / Phillips, George N. (Author) / Schmidt, Marius (Author) / College of Liberal Arts and Sciences (Contributor) / Department of Physics (Contributor) / School of Molecular Sciences (Contributor) / Biodesign Institute (Contributor) / Applied Structural Discovery (Contributor)
Created2016-12-15
130303-Thumbnail Image.png
Description
Serial femtosecond crystallography (SFX) using X-ray free-electron lasers has produced high-resolution, room temperature, time-resolved protein structures. We report preliminary SFX of Sindbis virus, an enveloped icosahedral RNA virus with ∼700 Å diameter. Microcrystals delivered in viscous agarose medium diffracted to ∼40 Å resolution. Small-angle diffuse X-ray scattering overlaid Bragg peaks and analysis

Serial femtosecond crystallography (SFX) using X-ray free-electron lasers has produced high-resolution, room temperature, time-resolved protein structures. We report preliminary SFX of Sindbis virus, an enveloped icosahedral RNA virus with ∼700 Å diameter. Microcrystals delivered in viscous agarose medium diffracted to ∼40 Å resolution. Small-angle diffuse X-ray scattering overlaid Bragg peaks and analysis suggests this results from molecular transforms of individual particles. Viral proteins undergo structural changes during entry and infection, which could, in principle, be studied with SFX. This is an important step toward determining room temperature structures from virus microcrystals that may enable time-resolved studies of enveloped viruses.
ContributorsLawrence, Robert (Author) / Conrad, Chelsie (Author) / Zatsepin, Nadia (Author) / Grant, Thomas D. (Author) / Liu, Haiguang (Author) / James, Daniel (Author) / Nelson, Garrett (Author) / Subramanian, Ganesh (Author) / Aquila, Andrew (Author) / Hunter, Mark S. (Author) / Liang, Mengning (Author) / Boutet, Sebastien (Author) / Coe, Jesse (Author) / Spence, John (Author) / Weierstall, Uwe (Author) / Liu, Wei (Author) / Fromme, Petra (Author) / Cherezov, Vadim (Author) / Hogue, Brenda (Author) / Biodesign Institute (Contributor) / Infectious Diseases and Vaccinology (Contributor) / Applied Structural Discovery (Contributor) / Department of Chemistry and Biochemistry (Contributor) / College of Liberal Arts and Sciences (Contributor) / Department of Physics (Contributor) / School of Life Sciences (Contributor)
Created2015-08-20
130306-Thumbnail Image.png
Description
Serial femtosecond crystallography (SFX) at X-ray free-electron lasers (XFELs) enables high-resolution protein structure determination using micrometre-sized crystals at room temperature with minimal effects from radiation damage. SFX requires a steady supply of microcrystals intersecting the XFEL beam at random orientations. An LCP–SFX method has recently been introduced in which microcrystals

Serial femtosecond crystallography (SFX) at X-ray free-electron lasers (XFELs) enables high-resolution protein structure determination using micrometre-sized crystals at room temperature with minimal effects from radiation damage. SFX requires a steady supply of microcrystals intersecting the XFEL beam at random orientations. An LCP–SFX method has recently been introduced in which microcrystals of membrane proteins are grown and delivered for SFX data collection inside a gel-like membrane-mimetic matrix, known as lipidic cubic phase (LCP), using a special LCP microextrusion injector. Here, it is demonstrated that LCP can also be used as a suitable carrier medium for microcrystals of soluble proteins, enabling a dramatic reduction in the amount of crystallized protein required for data collection compared with crystals delivered by liquid injectors. High-quality LCP–SFX data sets were collected for two soluble proteins, lysozyme and phycocyanin, using less than 0.1 mg of each protein.
ContributorsFromme, Raimund (Author) / Ishchenko, Andrii (Author) / Metz, Markus (Author) / Roy Chowdhury, Shatabdi (Author) / Basu, Shibom (Author) / Boutet, Sebastien (Author) / Fromme, Petra (Author) / White, Thomas A. (Author) / Barty, Anton (Author) / Spence, John (Author) / Weierstall, Uwe (Author) / Liu, Wei (Author) / Cherezov, Vadim (Author) / Biodesign Institute (Contributor) / Applied Structural Discovery (Contributor) / College of Liberal Arts and Sciences (Contributor) / Department of Physics (Contributor)
Created2015-08-04