Matching Items (134)
128212-Thumbnail Image.png
Description

The increasing world demand for human biologics cannot be met by current production platforms based primarily on mammalian cell culture due to prohibitive cost and limited scalability [1]. Recent progress in plant expression vector development, downstream processing, and glycoengineering has established plants as a superior alternative to biologic production [2–4].

The increasing world demand for human biologics cannot be met by current production platforms based primarily on mammalian cell culture due to prohibitive cost and limited scalability [1]. Recent progress in plant expression vector development, downstream processing, and glycoengineering has established plants as a superior alternative to biologic production [2–4]. Plants not only offer the traditional advantages of proper eukaryotic protein modification, potential low cost, high scalability, and increased safety but also allow the production of biologics at unprecedented speed to control potential pandemics or with specific glycoforms for better efficacy or safety (biobetters) [5, 6]. The approval of the first plant-made biologic (PMB) by the United States Food and Drug Administration (FDA) for treating Gaucher’s disease heralds a new era for PMBs and sparks new innovations in this field [7, 8].

ContributorsChen, Qiang (Author) / Santi, Luca (Author) / Zhang, Chenming (Author) / Biodesign Institute (Contributor)
Created2014-06-02
141423-Thumbnail Image.png
Description

Background:
Environmental heat exposure is a public health concern. The impacts of environmental heat on mortality and morbidity at the population scale are well documented, but little is known about specific exposures that individuals experience.

Objectives:
The first objective of this work was to catalyze discussion of the role of personal heat exposure

Background:
Environmental heat exposure is a public health concern. The impacts of environmental heat on mortality and morbidity at the population scale are well documented, but little is known about specific exposures that individuals experience.

Objectives:
The first objective of this work was to catalyze discussion of the role of personal heat exposure information in research and risk assessment. The second objective was to provide guidance regarding the operationalization of personal heat exposure research methods.

Discussion:
We define personal heat exposure as realized contact between a person and an indoor or outdoor environment that poses a risk of increases in body core temperature and/or perceived discomfort. Personal heat exposure can be measured directly with wearable monitors or estimated indirectly through the combination of time–activity and meteorological data sets. Complementary information to understand individual-scale drivers of behavior, susceptibility, and health and comfort outcomes can be collected from additional monitors, surveys, interviews, ethnographic approaches, and additional social and health data sets. Personal exposure research can help reveal the extent of exposure misclassification that occurs when individual exposure to heat is estimated using ambient temperature measured at fixed sites and can provide insights for epidemiological risk assessment concerning extreme heat.

Conclusions:
Personal heat exposure research provides more valid and precise insights into how often people encounter heat conditions and when, where, to whom, and why these encounters occur. Published literature on personal heat exposure is limited to date, but existing studies point to opportunities to inform public health practice regarding extreme heat, particularly where fine-scale precision is needed to reduce health consequences of heat exposure.

ContributorsKuras, Evan R. (Author) / Richardson, Molly B. (Author) / Calkins, Mirian M. (Author) / Ebi, Kristie L. (Author) / Gohlke, Julia M. (Author) / Hess, Jeremy J. (Author) / Hondula, David M. (Author) / Kintziger, Kristina W. (Author) / Jagger, Meredith A. (Author) / Middel, Ariane (Author) / Scott, Anna A. (Author) / Spector, June T. (Contributor) / Uejio, Christopher K. (Author) / Vanos, Jennifer K. (Author) / Zaitchik, Benjamin F. (Author)
Created2017-08
133440-Thumbnail Image.png
Description
Agrobacterium tumefaciens has the ability to transfer its tumor inducing (Ti) plasmid into plant cells. In the last decade, agroinfiltration of Nicotiana benthamiana plants has shown promising results for recombinant protein production. However, A. tumefaciens produce endotoxins in the form of lipopolysaccharides (LPS), a component of their outer membrane that

Agrobacterium tumefaciens has the ability to transfer its tumor inducing (Ti) plasmid into plant cells. In the last decade, agroinfiltration of Nicotiana benthamiana plants has shown promising results for recombinant protein production. However, A. tumefaciens produce endotoxins in the form of lipopolysaccharides (LPS), a component of their outer membrane that can induce organ failure and septic shock. Therefore, we aimed to detoxify A. tumefaciens by modifying their Lipid A structure, the toxic region of LPS, via mutating the genes for lipid A biosynthesis. Two mutant strains of A. tumefaciens were infiltrated into N. benthamiana stems to test for tumor formation to ensure that the detoxifying process did not compromise the ability of gene transfer. Our results demonstrated that A. tumefaciens with both single and double mutations retained the ability to form tumors. Thus, these mutants can be utilized to generate engineered A. tumefaciens strains for the production of plant-based pharmaceuticals with low endotoxicity.
ContributorsHaseefa, Fathima (Author) / Chen, Qiang (Thesis director) / Mason, Hugh (Committee member) / Hurtado, Jonathan (Committee member) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
Description
Urban centers worldwide face the escalating challenge of urban heat islands (UHIs), which exacerbate public health issues and energy consumption due to increased temperatures. This thesis focuses on the Phoenix metropolitan area, recognized for its high summer temperatures, to explore innovative computational strategies for mitigating urban heat through optimized tree

Urban centers worldwide face the escalating challenge of urban heat islands (UHIs), which exacerbate public health issues and energy consumption due to increased temperatures. This thesis focuses on the Phoenix metropolitan area, recognized for its high summer temperatures, to explore innovative computational strategies for mitigating urban heat through optimized tree placement. The research integrates high-fidelity microclimate modeling with advanced computational techniques to strategically position trees and enhance urban climate resilience. Utilizing the SOLWEIG and TreePlanter models, this study simulates the effects of tree planting on mean radiant temperature (MRT), crucial for thermal comfort in outdoor spaces. The models process geospatial data, including LiDAR and high-resolution thermal maps, to produce actionable insights for reducing urban temperatures. Results indicate that strategic tree planting significantly lowers MRT, enhancing urban livability and sustainability. This thesis contributes to urban planning by demonstrating how targeted greening interventions can alleviate the heat burden in cities, providing a replicable framework for other urban areas experiencing similar challenges.
ContributorsGarg, Shrey (Author) / Middel, Ariane (Thesis director) / Buo, Isaac (Committee member) / Barrett, The Honors College (Contributor)
Created2024-05