Matching Items (93)
152461-Thumbnail Image.png
Description
Foraging has complex effects on whole-organism homeostasis, and there is considerable evidence that foraging behavior is influenced by both environmental factors (e.g., food availability, predation risk) and the physiological condition of an organism. The optimization of foraging behavior to balance costs and benefits is termed state-dependent foraging (SDF) while behavior

Foraging has complex effects on whole-organism homeostasis, and there is considerable evidence that foraging behavior is influenced by both environmental factors (e.g., food availability, predation risk) and the physiological condition of an organism. The optimization of foraging behavior to balance costs and benefits is termed state-dependent foraging (SDF) while behavior that seeks to protect assets of fitness is termed the asset protection principle (APP). A majority of studies examining SDF have focused on the role that energy balance has on the foraging of organisms with high metabolism and high energy demands ("high-energy systems" such as endotherms). In contrast, limited work has examined whether species with low energy use ("low-energy systems" such as vertebrate ectotherms) use an SDF strategy. Additionally, there is a paucity of evidence demonstrating how physiological and environmental factors other than energy balance influence foraging behavior (e.g. hydration state and free-standing water availability). Given these gaps in our understanding of SDF behavior and the APP, I examined the state-dependency and consequences of foraging in a low-energy system occupying a resource-limited environment - the Gila monster (Heloderma suspectum, Cope 1869). In contrast to what has been observed in a wide variety of taxa, I found that Gila monsters do not use a SDF strategy to manage their energy reserves and that Gila monsters do not defend their energetic assets. However, hydration state and free-standing water availability do affect foraging behavior of Gila monsters. Additionally, as Gila monsters become increasingly dehydrated, they reduce activity to defend hydration state. The SDF behavior of Gila monsters appears to be largely driven by the fact that Gila monsters must separately satisfy energy and water demands with food and free-standing water, respectively, in conjunction with the timescale within which Gila monsters balance their energy and water budgets (supra-annually versus annually, respectively). Given these findings, the impact of anticipated changes in temperature and rainfall patterns in the Sonoran Desert are most likely going to pose their greatest risks to Gila monsters through the direct and indirect effects on water balance.
ContributorsWright, Christian (Author) / Denardo, Dale F. (Thesis advisor) / Harrison, Jon (Committee member) / McGraw, Kevin (Committee member) / Sullivan, Brian (Committee member) / Wolf, Blair (Committee member) / Arizona State University (Publisher)
Created2014
153365-Thumbnail Image.png
Description
Warning coloration deters predators from attacking prey that are defended, usually by being distasteful, toxic, or otherwise costly for predators to pursue and consume. Predators may have an innate response to warning colors or learn to associate them with a defense through trial and error. In general, predators should select

Warning coloration deters predators from attacking prey that are defended, usually by being distasteful, toxic, or otherwise costly for predators to pursue and consume. Predators may have an innate response to warning colors or learn to associate them with a defense through trial and error. In general, predators should select for warning signals that are easy to learn and recognize. Previous research demonstrates long-wavelength colors (e.g. red and yellow) are effective because they are readily detected and learned. However, a number of defended animals display short-wavelength coloration (e.g. blue and violet), such as the pipevine swallowtail butterfly (Battus philenor). The role of blue coloration in warning signals had not previously been explicitly tested. My research showed in laboratory experiments that curve-billed thrashers (Toxostoma curvirostre) and Gambel's quail (Callipepla gambelii) can learn and recognize the iridescent blue of B. philenor as a warning signal and that it is innately avoided. I tested the attack rates of these colors in the field and blue was not as effective as orange. I concluded that blue colors may function as warning signals, but the effectiveness is likely dependent on the context and predator.

Blue colors are often iridescent in nature and the effect of iridescence on warning signal function was unknown. I reared B. philenor larvae under varied food deprivation treatments. Iridescent colors did not have more variation than pigment-based colors under these conditions; variation which could affect predator learning. Learning could also be affected by changes in appearance, as iridescent colors change in both hue and brightness as the angle of illuminating light and viewer change in relation to the color surface. Iridescent colors can also be much brighter than pigment-based colors and iridescent animals can statically display different hues. I tested these potential effects on warning signal learning by domestic chickens (Gallus gallus domesticus) and found that variation due to the directionality of iridescence and a brighter warning signal did not influence learning. However, blue-violet was learned more readily than blue-green. These experiments revealed that the directionality of iridescent coloration does not likely negatively affect its potential effectiveness as a warning signal.
ContributorsPegram, Kimberly Vann (Author) / Rutowski, Ronald L (Thesis advisor) / Hoelldobler, Berthold (Committee member) / Liebig, Juergen (Committee member) / McGraw, Kevin (Committee member) / Smith, Brian H. (Committee member) / Arizona State University (Publisher)
Created2015
153589-Thumbnail Image.png
Description
Invasive salmonellosis caused by Salmonella enterica serovar Typhimurium ST313 is a major health crisis in sub-Saharan Africa, with multidrug resistance and atypical clinical presentation challenging current treatment regimens and resulting in high mortality. Moreover, the increased risk of spreading ST313 pathovars worldwide is of major concern, given global public transportation

Invasive salmonellosis caused by Salmonella enterica serovar Typhimurium ST313 is a major health crisis in sub-Saharan Africa, with multidrug resistance and atypical clinical presentation challenging current treatment regimens and resulting in high mortality. Moreover, the increased risk of spreading ST313 pathovars worldwide is of major concern, given global public transportation networks and increased populations of immunocompromised individuals (as a result of HIV infection, drug use, cancer therapy, aging, etc). While it is unclear as to how Salmonella ST313 strains cause invasive disease in humans, it is intriguing that the genomic profile of some of these pathovars indicates key differences between classic Typhimurium (broad host range), but similarities to human-specific typhoidal Salmonella Typhi and Paratyphi. In an effort to advance fundamental understanding of the pathogenesis mechanisms of ST313 in humans, I report characterization of the molecular genetic, phenotypic and virulence profiles of D23580 (a representative ST313 strain). Preliminary studies to characterize D23580 virulence, baseline stress responses, and biochemical profiles, and in vitro infection profiles in human surrogate 3-D tissue culture models were done using conventional bacterial culture conditions; while subsequent studies integrated a range of incrementally increasing fluid shear levels relevant to those naturally encountered by D23580 in the infected host to understand the impact of biomechanical forces in altering these characteristics. In response to culture of D23580 under these conditions, distinct differences in transcriptional biosignatures, pathogenesis-related stress responses, in vitro infection profiles and in vivo virulence in mice were observed as compared to those of classic Salmonella pathovars tested.

Collectively, this work represents the first characterization of in vivo virulence and in vitro pathogenesis properties of D23580, the latter using advanced human surrogate models that mimic key aspects of the parental tissue. Results from these studies highlight the importance of studying infectious diseases using an integrated approach that combines actions of biological and physical networks that mimic the host-pathogen microenvironment and regulate pathogen responses.
ContributorsYang, Jiseon (Author) / Nickerson, Cheryl A. (Thesis advisor) / Chang, Yung (Committee member) / Stout, Valerie (Committee member) / Ott, C Mark (Committee member) / Roland, Kenneth (Committee member) / Barrila, Jennifer (Committee member) / Arizona State University (Publisher)
Created2015
152765-Thumbnail Image.png
Description
Flavivirus infections are emerging as significant threats to human health around the globe. Among them West Nile(WNV) and Dengue Virus (DV) are the most prevalent in causing human disease with WNV outbreaks occurring in all areas around the world and DV epidemics in more than 100 countries. WNV is a

Flavivirus infections are emerging as significant threats to human health around the globe. Among them West Nile(WNV) and Dengue Virus (DV) are the most prevalent in causing human disease with WNV outbreaks occurring in all areas around the world and DV epidemics in more than 100 countries. WNV is a neurotropic virus capable of causing meningitis and encephalitis in humans. Currently, there are no therapeutic treatments or vaccines available. The expanding epidemic of WNV demands studies that develop efficacious therapeutics and vaccines and produce them rapidly and inexpensively. In response, our lab developed a plant-derived monoclonal antibody (mAb) (pHu-E16) against DIII (WNV antigen) that is able to neutralize and prevent mice from lethal infection. However, this drug has a short window of efficacy due to pHu-E16's inability to cross the Blood Brain Barrier (BBB) and enter the brain. Here, we constructed a bifunctional diabody, which couples the neutralizing activity of E16 and BBB penetrating activity of 8D3 mAb. We also produced a plant-derived E16 scFv-CH1-3 variant with equivalent specific binding as the full pHu-E16 mAb, but only requiring one gene construct for production. Furthermore, a WNV vaccine based on plant-derived DIII was developed showing proper folding and potentially protective immune response in mice. DV causes severe hemorrhaging diseases especially in people exposed to secondary DV infection from a heterotypic strain. It is hypothesized that sub-neutralizing cross-reactive antibodies from the first exposure aid the second infection in a process called antibody-dependent enhancement (ADE). ADE depends on the ability of mAb to bind Fc receptors (FcγRs), and has become a major roadblock for developing mAb-based therapeutics against DV. We aim to produce an anti-Dengue mAb (E60) in different glycoengineered plant lines that exhibit reduced/differential binding to FcγRs, therefore, reducing or eliminating ADE. We have successfully cloned the molecular constructs of E60, and expressed it in two plant lines with different glycosylation patterns. We demonstrated that both plant-derived E60 mAb glycoforms retained specific recognition and neutralization activity against DV. Overall, our study demonstrates great strives to develop efficacious therapeutics and potent vaccine candidates against Flaviviruses in plant expression systems.
ContributorsHurtado, Jonathan (Author) / Chen, Qiang (Thesis advisor) / Huffman, Holly A (Committee member) / Steele, Kelly P (Committee member) / Arizona State University (Publisher)
Created2014
153699-Thumbnail Image.png
Description
The Great Bustard (Otis tarda) is an iconic species of the temperate grasslands of Europe and Asia, a habitat that is among the least protected ecosystems in the world. A distinct subspecies, the Asian Great Bustard (O. t. dybowskii), is poorly understood due to its wary nature and remote range

The Great Bustard (Otis tarda) is an iconic species of the temperate grasslands of Europe and Asia, a habitat that is among the least protected ecosystems in the world. A distinct subspecies, the Asian Great Bustard (O. t. dybowskii), is poorly understood due to its wary nature and remote range in Siberia, Mongolia, and northern China. This subspecies is now endangered by rapid development.

Using satellite telemetry and remote sensing, I investigated three aspects of the Asian Great Bustard’s ecology critical to its conservation: migratory routes, migratory cues, and habitat use patterns. I found that Asian Great Bustards spent one-third of the year on a 2000 km migratory pathway, a distance twice as far as has previously been recorded for the species. Tracked individuals moved nomadically over large winter territories and did not repeat migratory stopovers, complicating conservation planning. Migratory timing was variable and migratory movements were significantly correlated with weather cues. Specifically, bustards migrated on days when wind support was favorable and temperature presaged warmer temperatures on the breeding grounds (spring) or advancing winter weather (fall). On the breeding grounds, Asian Great Bustards used both steppe and wheat agriculture habitat. All recorded reproductive attempts failed, regardless of habitat in which the nest was placed. Agricultural practices are likely to intensify in the coming decade, which would present further challenges to reproduction. The distinct migratory behavior and habitat use patterns of the Asian Great Bustard are likely adaptations to the climate and ecology of Inner Asia and underscore the importance of conserving these unique populations.

My research indicates that conservation of the Asian Great Bustard will require a landscape-level approach. This approach should incorporate measures at the breeding grounds to raise reproductive success, alongside actions on the migratory pathway to ensure appropriate habitat and reduce adult mortality. To secure international cooperation, I proposed that an increased level of protection should be directed toward the Great Bustard under the Convention on Migratory Species (CMS). That proposal, accepted by the Eleventh Conference of Parties to CMS, provides recommendations for conservation action and illustrates the transdisciplinary approach I have taken in this research.
ContributorsKessler, Aimee (Author) / Smith, Andrew T. (Thesis advisor) / Brown, David (Committee member) / Franklin, Janet (Committee member) / McGraw, Kevin (Committee member) / Wu, Jianguo (Committee member) / Arizona State University (Publisher)
Created2015
153216-Thumbnail Image.png
Description
For animals that experience annual cycles of gonad development, the seasonal timing (phenology) of gonad growth is a major adaptation to local environmental conditions. To optimally time seasonal gonad growth, animals use environmental cues that forecast future conditions. The availability of food is one such environmental cue. Although the importance

For animals that experience annual cycles of gonad development, the seasonal timing (phenology) of gonad growth is a major adaptation to local environmental conditions. To optimally time seasonal gonad growth, animals use environmental cues that forecast future conditions. The availability of food is one such environmental cue. Although the importance of food availability has been appreciated for decades, the physiological mechanisms underlying the modulation of seasonal gonad growth by this environmental factor remain poorly understood.

Urbanization is characterized by profound environmental changes, and urban animals must adjust to an environment vastly different from that of their non-urban conspecifics. Evidence suggests that birds adjust to urban areas by advancing the timing of seasonal breeding and gonad development, compared to their non-urban conspecifics. A leading hypothesis to account for this phenomenon is that food availability is elevated in urban areas, which improves the energetic status of urban birds and enables them to initiate gonad development earlier than their non-urban conspecifics. However, this hypothesis remains largely untested.

My dissertation dovetailed comparative studies and experimental approaches conducted in field and captive settings to examine the physiological mechanisms by which food availability modulates gonad growth and to investigate whether elevated food availability in urban areas advances the phenology of gonad growth in urban birds. My captive study demonstrated that energetic status modulates reproductive hormone secretion, but not gonad growth. By contrast, free-ranging urban and non-urban birds did not differ in energetic status or plasma levels of reproductive hormones either in years in which urban birds had advanced phenology of gonad growth or in a year that had no habitat-related disparity in seasonal gonad growth. Therefore, my dissertation provides no support for the hypothesis that urban birds begin seasonal gonad growth because they are in better energetic status and increase the secretion of reproductive hormones earlier than non-urban birds. My studies do suggest, however, that the phenology of key food items and the endocrine responsiveness of the reproductive system may contribute to habitat-related disparities in the phenology of gonad growth.
ContributorsDavies, Scott (Author) / Deviche, Pierre (Thesis advisor) / Sweazea, Karen (Committee member) / McGraw, Kevin (Committee member) / Orchinik, Miles (Committee member) / Warren, Paige (Committee member) / Arizona State University (Publisher)
Created2014
155697-Thumbnail Image.png
Description
Many animals thermoregulate to maximize performance. However, interactions with other animals, such as competitors or predators, limit access to preferred microclimates. For instance, an animal may thermoregulate poorly when fighting rivals or avoiding predators. However, the distribution of thermal resources should influence how animals perceive and respond to risk. When

Many animals thermoregulate to maximize performance. However, interactions with other animals, such as competitors or predators, limit access to preferred microclimates. For instance, an animal may thermoregulate poorly when fighting rivals or avoiding predators. However, the distribution of thermal resources should influence how animals perceive and respond to risk. When thermal resources are concentrated in space, individuals compete for access, which presumably reduces the thermoregulatory performance while making their location more predictable to predators. Conversely, when thermal resources are dispersed, several individuals can thermoregulate effectively without occupying the same area. Nevertheless, interactions with competitors or predators impose a potent stress, often resulting in both behavioral and physiological changes that influence thermoregulation. To assess the costs of intraspecific competition and predation risk during thermoregulation, I measured thermoregulation, movement, and hormones of male lizards (Sceloporus jarrovi) in experiment landscapes, with clumped to patchy distributions of microclimates. I found lizards aggressively competed for access to microclimates, with larger males gaining priority access when thermal resources were aggregated. Competition reduced thermoregulatory performance, increased movements, and elevated plasma corticosterone in large and small males. However, the magnitude of these responses decreased as the patchiness of the thermal environment increased. Similarly, under simulated predation risk, lizards reduced thermoregulatory performance, decreased movements, and elevated plasma corticosterone. Again, with the magnitude of these responses decreased with increasing thermal patchiness. Interestingly, even without competitors or predators, lizards in clumped arenas moved greater distances and circulated more corticosterone than did lizards in patchy arenas, indicating the thermal quality of the thermal landscape affected the energetic demands on lizards. Thus, biologists should consider species interactions and spatial structure when modeling impacts of climate change on thermoregulation.
ContributorsRusch, Travis W (Author) / Angilletta, Michael (Thesis advisor) / Sears, Mike (Committee member) / DeNardo, Dale (Committee member) / Deviche, Pierre (Committee member) / McGraw, Kevin (Committee member) / Arizona State University (Publisher)
Created2017
155537-Thumbnail Image.png
Description
The molt from pupae to adult stage, called eclosion, occurs at specific times of the day in many holometabolous insects. These events are not well studied within Lepidopteran species. It was hypothesized that the eclosion timing in a species may be shaped by strong selective pressures, such as sexual selection

The molt from pupae to adult stage, called eclosion, occurs at specific times of the day in many holometabolous insects. These events are not well studied within Lepidopteran species. It was hypothesized that the eclosion timing in a species may be shaped by strong selective pressures, such as sexual selection in the context of male-male competition. The daily timing of eclosion was measured for six species of nymphalid butterflies. This was done by rearing individuals to pupation, placing the pupa in a greenhouse, and video recording eclosion to obtain the time of day at which it occurred. Four species exhibited clustered eclosion distributions that were concentrated to within 201 minutes after sunrise and were significantly different from one another. The other two species exhibited eclosion times that were non-clustered. There were no differences between sexes within species. The data support a relationship between the timing of eclosion each day and the timing of mating activities, but other as of yet undetermined selective pressures may also influence eclosion timing.
ContributorsSencio, Kaylon (Author) / Rutowski, Ron (Thesis advisor) / McGraw, Kevin (Committee member) / Pratt, Stephen (Committee member) / Arizona State University (Publisher)
Created2017
155874-Thumbnail Image.png
Description
In sub-Saharan Africa, an invasive form of nontyphoidal Salmonella (iNTS) belonging to sequence type (ST)313 has emerged as a major public health concern causing widespread bacteremia and mortality in children with malaria and adults with HIV. Clinically, ST313 pathovars are characterized by the absence of gastroenteritis, which is commonly found

In sub-Saharan Africa, an invasive form of nontyphoidal Salmonella (iNTS) belonging to sequence type (ST)313 has emerged as a major public health concern causing widespread bacteremia and mortality in children with malaria and adults with HIV. Clinically, ST313 pathovars are characterized by the absence of gastroenteritis, which is commonly found in “classical” nontyphoidal Salmonella (NTS), along with multidrug resistance, pseudogene formation, and chromosome degradation. There is an urgent need to understand the biological and physical factors that regulate the disease causing properties of ST313 strains. Previous studies from our lab using dynamic Rotating Wall Vessel (RWV) bioreactor technology and “classical” NTS strain χ3339 showed that physiological fluid shear regulates gene expression, stress responses and virulence in unexpected ways that are not observed using conventional shake and static flask conditions, and in a very different manner as compared to ST313 strain D23580. Leveraging from these findings, the current study was the first to report the effect of fluid shear on the pathogenesis-related stress responses of S. Typhimurium ST313 strain A130, which evolved earlier than D23580 within the ST313 clade. A130 displayed enhanced resistance to acid, oxidative and bile stresses when cultured in the high fluid shear (HFS) control condition relative to the low fluid shear (LFS) condition in stationary phase using Lennox Broth (LB) as the culture medium. The greatest magnitude of the survival benefit conferred by high fluid shear was observed in response to oxidative and acid stresses. No differences were observed for thermal and osmotic stresses. Based on previous findings from our laboratory, we also assessed how the addition of phosphate or magnesium ions to the culture medium altered the acid or oxidative stress responses of A130 grown in the RWV. Addition of either

phosphate or magnesium to the culture medium abrogated the fluid shear-related differences observed for A130 in LB medium for the acid or oxidative stress responses, respectively. Collectively, these findings indicate that like other Salmonella strains assessed thus far by our team, A130 responds to differences in physiological fluid shear, and that ion concentrations can modulate those responses.
ContributorsGutierrez-Jensen, Ami Dave (Author) / Nickerson, Cheryl A. (Thesis advisor) / Barrila, Jennifer (Thesis advisor) / Ott, C. M. (Committee member) / Roland, Kenneth (Committee member) / Arizona State University (Publisher)
Created2017
156116-Thumbnail Image.png
Description
Immunotherapy has been revitalized with the advent of immune checkpoint blockade

treatments, and neo-antigens are the targets of immune system in cancer patients who

respond to the treatments. The cancer vaccine field is focused on using neo-antigens from

unique point mutations of genomic sequence in the cancer patient for making

personalized cancer vaccines. However,

Immunotherapy has been revitalized with the advent of immune checkpoint blockade

treatments, and neo-antigens are the targets of immune system in cancer patients who

respond to the treatments. The cancer vaccine field is focused on using neo-antigens from

unique point mutations of genomic sequence in the cancer patient for making

personalized cancer vaccines. However, we choose a different path to find frameshift

neo-antigens at the mRNA level and develop broadly effective cancer vaccines based on

frameshift antigens.

In this dissertation, I have summarized and characterized all the potential frameshift

antigens from microsatellite regions in human, dog and mouse. A list of frameshift

antigens was validated by PCR in tumor samples and the mutation rate was calculated for

one candidate – SEC62. I develop a method to screen the antibody response against

frameshift antigens in human and dog cancer patients by using frameshift peptide arrays.

Frameshift antigens selected by positive antibody response in cancer patients or by MHC

predictions show protection in different mouse tumor models. A dog version of the

cancer vaccine based on frameshift antigens was developed and tested in a small safety

trial. The results demonstrate that the vaccine is safe and it can induce strong B and T cell

immune responses. Further, I built the human exon junction frameshift database which

includes all possible frameshift antigens from mis-splicing events in exon junctions, and I

develop a method to find potential frameshift antigens from large cancer

immunosignature dataset with these databases. In addition, I test the idea of ‘early cancer

diagnosis, early treatment’ in a transgenic mouse cancer model. The results show that

ii

early treatment gives significantly better protection than late treatment and the correct

time point for treatment is crucial to give the best clinical benefit. A model for early

treatment is developed with these results.

Frameshift neo-antigens from microsatellite regions and mis-splicing events are

abundant at mRNA level and they are better antigens than neo-antigens from point

mutations in the genomic sequences of cancer patients in terms of high immunogenicity,

low probability to cause autoimmune diseases and low cost to develop a broadly effective

vaccine. This dissertation demonstrates the feasibility of using frameshift antigens for

cancer vaccine development.
ContributorsZhang, Jian (Author) / Johnston, Stephen Albert (Thesis advisor) / Chang, Yung (Committee member) / Stafford, Phillip (Committee member) / Chen, Qiang (Committee member) / Arizona State University (Publisher)
Created2018