Matching Items (100)
134065-Thumbnail Image.png
Description
The development of safe and effective vaccines has been one of the greatest public achievements of the 20th century. However, there is still considerable public debate about the relative health costs and benefits of vaccines, and the information and misinformation spread through these debates can have a direct impact on

The development of safe and effective vaccines has been one of the greatest public achievements of the 20th century. However, there is still considerable public debate about the relative health costs and benefits of vaccines, and the information and misinformation spread through these debates can have a direct impact on vaccination and whether or not herd immunity will continue in the United States for different diseases. To understand perceptions of vaccine risks and effectiveness among young adults in the U.S., this study describes Arizona State University students' perceptions of the harms and benefits of vaccines. A preliminary free list (n=30) identified what vaccines ASU college students were most likely to recall spontaneously. The six vaccines most commonly mentioned by ASU students were: influenza (flu), chickenpox, HPV, polio, MMR, and smallpox. Using these top six vaccines, we then developed a second survey about the knowledge and perceptions of each of these vaccines and vaccines as a whole. We found that students generally perceived vaccines as safe and important to their health, but they maintained an overall lack of understanding of how vaccines work and what they protect against. While this study is only a preliminary investigation into the perceptions of ASU college students on six commonly mentioned vaccines, this could lead to investigations on how to educate and promote the usage of vaccines to college students.
ContributorsGilson, Jacob (Co-author) / Sutton, Carly (Co-author) / Hruschka, Daniel (Thesis director) / Ruth, Alissa (Committee member) / W. P. Carey School of Business (Contributor) / School of Human Evolution and Social Change (Contributor) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2017-12
133792-Thumbnail Image.png
Description
A chimeric, humanized monoclonal antibody that recognizes a highly conserved fusion loop found on flaviviruses was constructed with a geminiviral replicon and transiently expressed in Nicotiana benthamiana plants through Agrobacterium tumefaciens infiltration. Characterization and expression studies were then conducted to confirm correct assembly of the antibody. Once the antibody was

A chimeric, humanized monoclonal antibody that recognizes a highly conserved fusion loop found on flaviviruses was constructed with a geminiviral replicon and transiently expressed in Nicotiana benthamiana plants through Agrobacterium tumefaciens infiltration. Characterization and expression studies were then conducted to confirm correct assembly of the antibody. Once the antibody was purified, an ELISA was conducted to validate that the antibody was able to bind to the flavivirus fusion loop.
ContributorsPardhe, Mary (Author) / Mason, Hugh (Thesis director) / Chen, Qiang (Committee member) / Mor, Tsafrir (Committee member) / School of Life Sciences (Contributor) / Department of Information Systems (Contributor) / W.P. Carey School of Business (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
134794-Thumbnail Image.png
Description
A major recurring issue with aid-providing nonprofit organizations is the lack of accountability to recipients. In many cases, there are not clear-cut ways of measuring the efficiency or effectiveness of aid or to determine when and how the aid is failing to meet the needs of recipients. This study focused

A major recurring issue with aid-providing nonprofit organizations is the lack of accountability to recipients. In many cases, there are not clear-cut ways of measuring the efficiency or effectiveness of aid or to determine when and how the aid is failing to meet the needs of recipients. This study focused on one particular non-governmental organization, Project C.U.R.E., that provides medical aid to developing countries in the form of devices and equipment. It investigated the causes of misalignments observed in Project C.U.R.E.'s medical aid process, specifically with three loads that were shipped to the Ahwiaa, Akoti, Bassengele, Chirano, Humjibre, Ntrentrenso, Paboase, and Wenchi clinics as well as the Bibiani hospital in Ghana between June 2015 and May 2016. The medical aid donation process was observed at the each of its steps. Data was collected through interviews with Project C.U.R.E. employees and associates, and was organized and analyzed using Lean Six Sigma tools in order to find areas where the process broke down or failed. These tools included process mapping, root cause analysis through the use of Pareto charts and process failure mode and effects analysis (PFMEA). Once all of the issues from the shipment were categorized, it was found that the three most common types of issues were the preparation of the device being unclear or being unloaded incorrectly, power issues, and misalignment in terms training, needs, and infrastructure. The PFMEAs identified high-priority issues with missing fields in the Needs Assessment Booklet in the needs assessment step, misaligned products in terms of power availability in the planning step, and a lack of standardization in the warehouse operations step. 50 unique solutions were brainstormed in order to address these issues, as well as others. This means that Lean Six Sigma tools such as Pareto charts and PFMEA can be used to identify problems, identify causes and effects of problems, and help to produce solutions to the identified problems. In the future, more in-depth research into Project C.U.R.E.'s impact evaluation process could be pursued.
ContributorsFisk, Nicole Diane (Author) / Hruschka, Daniel (Thesis director) / Walters, Danielle (Committee member) / School of Human Evolution and Social Change (Contributor) / Harrington Bioengineering Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
135235-Thumbnail Image.png
Description
Virus-Like Particles (VLPs) are self-assembling structures that lack the viral genetic material. Therefore they are safer and more immunogenic than other forms of vaccines. The Hepatitis B core (HBc) VLPs are a novel mechanism through which delivery of DNA-based human vaccines are plausible. Production of VLPs require recombinant, rapidly replicating,

Virus-Like Particles (VLPs) are self-assembling structures that lack the viral genetic material. Therefore they are safer and more immunogenic than other forms of vaccines. The Hepatitis B core (HBc) VLPs are a novel mechanism through which delivery of DNA-based human vaccines are plausible. Production of VLPs require recombinant, rapidly replicating, plant-based systems such as the geminiviral replicon system. This project entails the cloning process of HBc-DIII fusion protein, a VLP that should form Domain III of the Envelope protein on West Nile Virus, into deconstructed geminiviral vector. The cloning process includes the HBc-DIII fusion protein DNA isolation, restriction enzyme digestion with NcoI and SacI, PCR changing the NcoI site on the HBc-DIII insert to XbaI, sequencing, ligation into geminiviral vector and transformation into an agrobacterium strain. The major impediment to the cloning process was the presence of multiple bands instead of the expected two bands while doing restriction enzyme digests. The troubleshooting process enabled speculating that due to the excess of restriction enzymes in the digestion volume, some of the DNA was not digested completely. Hence, multiple bands were observed. However, sequencing analysis and further cloning process ensured the presence of HBc-DIII insert band (approximately 800bp) in the Gemini vector. Lastly, the construct HBc-DIII in Gemini vector was ensured to be in agrobacterium for further experiments such as agro-infiltration.
ContributorsSuresh Kumar, Reshma (Author) / Chen, Qiang (Thesis director) / Zhang, Peiming (Committee member) / School of Molecular Sciences (Contributor) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
134774-Thumbnail Image.png
Description
Through a standpoint feminist perspective (Harding 2009) I conducted a situational analysis (Clarke, 2015) that examined academic literature and cancer support discussion boards (DBs) to identify how Western biomedicine, specifically oncology, can integrate complementary and alternative medicine (CAM) to improve cancer treatment in children. The aims of this project were:

Through a standpoint feminist perspective (Harding 2009) I conducted a situational analysis (Clarke, 2015) that examined academic literature and cancer support discussion boards (DBs) to identify how Western biomedicine, specifically oncology, can integrate complementary and alternative medicine (CAM) to improve cancer treatment in children. The aims of this project were: 1) to identify the CAM treatments that are being used to alleviate the side effects from oncological treatments and/or treat pediatric cancers; 2) to compare the subjective experience of CAM to Western biomedicine of cancer patients who leave comments on Group Loop, Cancer Compass and Cancer Forums, which are online support groups (N=20). I used grounded theory and situational mapping to analyze discussion threads. The participants identified using the following CAM treatments: herbs, imagery, prayer, stinging nettle, meditation, mind-body therapies and supplements. The participants turned to CAM treatments when their cancer was late-stage or terminal, often as an integrative and not exclusively to treat their cancer. CAM was more "effective" than biomedical oncology treatment at improving their overall quality of life and functionality. We found that youth on discussion boards did not discuss CAM treatments like the adult participants, but all participants visited these sites for support and verification of their cancer treatments. My main integration recommendation is to combine mind-body CAM therapies with biomedical treatment. This project fills the gap in literature that ignores the ideas of vulnerable populations by providing the experiences of adult and pediatric cancer patients, and that of their families. It is applicable to areas of the social studies of medicine, patient care, and families suffering from cancer. KEYWORDS: Cancer; Complementary and Alternative Medicine; Situational Analysis; Standpoint Feminism
ContributorsEsposito, Sydney Maria (Author) / Martinez, Airín (Thesis director) / Hruschka, Daniel (Committee member) / School of Human Evolution and Social Change (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
160873-Thumbnail Image.png
Description

Background

The transition from the home to college is a phase in which emerging adults shift toward more unhealthy eating and physical activity patterns, higher body mass indices, thus increasing risk of overweight/obesity. Currently, little is understood about how changing friendship networks shape weight gain behaviors. This paper describes the

Background

The transition from the home to college is a phase in which emerging adults shift toward more unhealthy eating and physical activity patterns, higher body mass indices, thus increasing risk of overweight/obesity. Currently, little is understood about how changing friendship networks shape weight gain behaviors. This paper describes the recruitment, data collection, and data analytic protocols for the SPARC (Social impact of Physical Activity and nutRition in College) study, a longitudinal examination of the mechanisms by which friends and friendship networks influence nutrition and physical activity behaviors and weight gain in the transition to college life.

Methods

The SPARC study aims to follow 1450 university freshmen from a large university over an academic year, collecting data on multiple aspects of friends and friendship networks. Integrating multiple types of data related to student lives, ecological momentary assessments (EMAs) are administered via a cell phone application, devilSPARC. EMAs collected in four 1-week periods (a total of 4 EMA waves) are integrated with linked data from web-based surveys and anthropometric measurements conducted at four times points (for a total of eight data collection periods including EMAs, separated by ~1 month). University databases will provide student card data, allowing integration of both time-dated data on food purchasing, use of physical activity venues, and geographical information system (GIS) locations of these activities relative to other students in their social networks.

Discussion

Findings are intended to guide the development of more effective interventions to enhance behaviors among college students that protect against weight gain during college.

ContributorsBruening, Meg (Author) / Ohri-Vachaspati, Punam (Author) / Brewis, Alexandra (Author) / Laska, Melissa (Author) / Todd, Michael (Author) / Hruschka, Daniel (Author) / Schaefer, David (Author) / Whisner, Corrie M (Author) / Dunton, Genevieve (Author)
Created2016-08-30
168416-Thumbnail Image.png
Description

Vaccines are one of the most effective ways of combating infectious diseases and developing vaccine platforms that can be used to produce vaccines can greatly assist in combating global public health threats. This dissertation focuses on the development and pre-clinical testing of vaccine platforms that are highly immunogenic, easily modifiable,

Vaccines are one of the most effective ways of combating infectious diseases and developing vaccine platforms that can be used to produce vaccines can greatly assist in combating global public health threats. This dissertation focuses on the development and pre-clinical testing of vaccine platforms that are highly immunogenic, easily modifiable, economically viable to produce, and stable. These criteria are met by the recombinant immune complex (RIC) universal vaccine platform when produced in plants. The RIC platform is modeled after naturally occurring immune complexes that form when an antibody, a component of the immune system that recognizes protein structures or sequences, binds to its specific antigen, a molecule that causes an immune response. In the RIC platform, a well-characterized antibody is linked via its heavy chain, to an antigen tagged with the antibody-specific epitope. The RIC antibody binds to the epitope tags on other RIC molecules and forms highly immunogenic complexes. My research has primarily focused on the optimization of the RIC platform. First, I altered the RIC platform to enable an N-terminal antigenic fusion instead of the previous C-terminal fusion strategy. This allowed the platform to be used with antigens that require an accessible N-terminus. A mouse immunization study with a model antigen showed that the fusion location, either N-terminal or C-terminal, did not impact the immune response. Next, I studied a synergistic response that was seen upon co-delivery of RIC with virus-like particles (VLP) and showed that the synergistic response could be produced with either N-terminal or C-terminal RIC co-delivered with VLP. Since RICs are inherently insoluble due to their ability to form complexes, I also examined ways to increase RIC solubility by characterizing a panel of modified RICs and antibody-fusions. The outcome was the identification of a modified RIC that had increased solubility while retaining high immunogenicity. Finally, I modified the RIC platform to contain multiple antigenic insertion sites and explored the use of bioinformatic tools to guide the design of a broadly protective vaccine.

ContributorsPardhe, Mary (Author) / Mason, Hugh S (Thesis advisor) / Chen, Qiang (Committee member) / Mor, Tsafrir (Committee member) / Wilson, Melissa (Committee member) / Arizona State University (Publisher)
Created2021
171464-Thumbnail Image.png
Description
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of coronavirus disease 2019 (COVID-19) that emerged from a zoonotic host at the end of 2019 and caused a public health crisis. In this collection of studies, Nicotiana benthamiana plants are used to set the foundation for producing monoclonal

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of coronavirus disease 2019 (COVID-19) that emerged from a zoonotic host at the end of 2019 and caused a public health crisis. In this collection of studies, Nicotiana benthamiana plants are used to set the foundation for producing monoclonal antibodies (mAbs) with homogeneous glycosylation to neutralize SARS-CoV-2 and potentially address the immunopathology often observed with severe COVID-19. Specifically, a mAb against the human interleukin (IL)-6 receptor (sarilumab) was generated and evaluated in vitro for its potential to reduce IL-6 signaling that has been shown to be associated with more severe cases of COVID-19. Furthermore, multiple mAbs that bind to the receptor-binding domain (RBD) of SARS-CoV-2 and efficiently neutralize the virus were developed using plant-based expression. Several of these mAbs are from different classes of RBD-binding mAbs that have distinct binding sites from one another. Several mAbs from different classes showed synergy in neutralizing the ancestral strain of SARS-CoV-2 and a smaller subset showed synergy when tested against the highly mutated Omicron (B.1.1.529) variant. Of interest, a novel RBD-binding mAb, termed 11D7, that was raised against the ancestral strain and derived from a hybridoma, appears to have an epitope on the RBD that contributes more synergy to a mAb combination that efficiently neutralizes the B.1.1.529 variant of SARS-CoV-2. This epitope was partially mapped by competitive binding and shows that it overlaps with another known antibody that binds a cryptic, distal epitope, away from the receptor binding site, giving insight into the potential mechanism by which 11D7 neutralizes SARS-CoV-2, as well as potentially allowing it to resist SARS-CoV-2 immune evasion more efficiently. Furthermore, this mAb carries a highly homogeneous glycan pattern when expressed in N. benthamiana, that may contribute to enhanced effector function and provides a tool to elucidate the precise role of crystallizable fragment (Fc)-mediated protection in SARS-CoV-2 infection. Ultimately, these studies provide evidence of the utility of plant-made mAbs to be used as cocktail members, giving clarity to the use of less potent mAbs as valuable cocktail components which will spur further investigations into how mAbs with unique epitopes work together to efficiently neutralize SARS-CoV-2.
ContributorsJugler, Collin (Author) / Chen, Qiang (Thesis advisor) / Lake, Douglas (Committee member) / Steele, Kelly (Committee member) / Mason, Hugh (Committee member) / Arizona State University (Publisher)
Created2022
189337-Thumbnail Image.png
Description
Social norms are unwritten behavioral codes. They direct individual behaviors, facilitate interpersonal coordination and cooperation, and lead to variation among human populations. Understanding how norms are maintained and how they change is critical for understanding human evolutionary psychology, social organization, and cultural change. This dissertation uses a mathematical model and

Social norms are unwritten behavioral codes. They direct individual behaviors, facilitate interpersonal coordination and cooperation, and lead to variation among human populations. Understanding how norms are maintained and how they change is critical for understanding human evolutionary psychology, social organization, and cultural change. This dissertation uses a mathematical model and a field study to answer two questions: First, what factors determine the content and dynamics of a social norm? Second, how do people make decisions in a normative context? The mathematical model finds that contrary to the popular belief that even arbitrary or deleterious social norms can be maintained once established because deviants suffer coordination failures and social sanctions, norms with continuously varying options cannot be maintained by the pressure to do what others do. Instead, continuous norms evolve to the optimum determined by environmental pressure, individual preferences, or cognitive processes. Therefore, the content of norms across human societies may be less historically constrained than previously assumed. The field study shows that unlike what rational choice theory predicts, people in a small-scale subsistence society do not calculate the ecological and social payoffs of different behaviors in a normative context, even when they have the information to do so. Instead, they rely heavily on social information about what others do. This decision-making algorithm, together with mental categorization that ignores small deviations, and cognitive biases that favor the division prescribed by the norm, maintain an ecologically inefficient and widely disliked cooperative surplus division norm in a Derung village, Dizhengdang, in Yunnan, China.
ContributorsYan, Minhua (Author) / Boyd, Robert (Thesis advisor) / Mathew, Sarah (Thesis advisor) / Hruschka, Daniel (Committee member) / Arizona State University (Publisher)
Created2023
171365-Thumbnail Image.png
Description
Scientists are entrusted with developing novel molecular strategies for effective prophylactic and therapeutic interventions. Antivirals are indispensable tools that can be targeted at viral domains directly or at cellular domains indirectly to obstruct viral infections and reduce pathogenicity. Despite their transformative potential in healthcare, to date, antivirals have been clinically

Scientists are entrusted with developing novel molecular strategies for effective prophylactic and therapeutic interventions. Antivirals are indispensable tools that can be targeted at viral domains directly or at cellular domains indirectly to obstruct viral infections and reduce pathogenicity. Despite their transformative potential in healthcare, to date, antivirals have been clinically approved to treat only 10 out of the greater than 200 known pathogenic human viruses. Additionally, as obligate intracellular parasites, many virus functions are intimately coupled with host cellular processes. As such, the development of a clinically relevant antiviral is challenged by the limited number of clear targets per virus and necessitates an extensive insight into these molecular processes. Compounding this challenge, many viral pathogens have evolved to evade effective antivirals. Therefore, a means to develop virus- or strain-specific antivirals without detailed insight into each idiosyncratic biochemical mechanism may aid in the development of antivirals against a larger swath of pathogens. Such an approach will tremendously benefit from having the specific molecular recognition of viral species as the lowest barrier. Here, I modify a nanobody (anti-green fluorescent protein) that specifically recognizes non-essential epitopes (glycoprotein M-pHluorin chimera) presented on the extra virion surface of a virus (Pseudorabies virus strain 486). The nanobody switches from having no inhibitory properties (tested up to 50 μM) to ∼3 nM IC50 in in vitro infectivity assays using porcine kidney (PK15) cells. The nanobody modifications use highly reliable bioconjugation to a three-dimensional wireframe deoxyribonucleic acid (DNA) origami scaffold. Mechanistic studies suggest that inhibition is mediated by the DNA origami scaffold bound to the virus particle, which obstructs the internalization of the viruses into cells, and that inhibition is enhanced by avidity resulting from multivalent virus and scaffold interactions. The assembled nanostructures demonstrate negligible cytotoxicity (<10 nM) and sufficient stability, further supporting their therapeutic potential. If translatable to other viral species and epitopes, this approach may open a new strategy that leverages existing infrastructures – monoclonal antibody development, phage display, and in vitro evolution - for rapidly developing novel antivirals in vivo.
ContributorsPradhan, Swechchha (Author) / Hariadi, Rizal (Thesis advisor) / Hogue, Ian (Committee member) / Varsani, Arvind (Committee member) / Chen, Qiang (Committee member) / Arizona State University (Publisher)
Created2022