Matching Items (76)
153216-Thumbnail Image.png
Description
For animals that experience annual cycles of gonad development, the seasonal timing (phenology) of gonad growth is a major adaptation to local environmental conditions. To optimally time seasonal gonad growth, animals use environmental cues that forecast future conditions. The availability of food is one such environmental cue. Although the importance

For animals that experience annual cycles of gonad development, the seasonal timing (phenology) of gonad growth is a major adaptation to local environmental conditions. To optimally time seasonal gonad growth, animals use environmental cues that forecast future conditions. The availability of food is one such environmental cue. Although the importance of food availability has been appreciated for decades, the physiological mechanisms underlying the modulation of seasonal gonad growth by this environmental factor remain poorly understood.

Urbanization is characterized by profound environmental changes, and urban animals must adjust to an environment vastly different from that of their non-urban conspecifics. Evidence suggests that birds adjust to urban areas by advancing the timing of seasonal breeding and gonad development, compared to their non-urban conspecifics. A leading hypothesis to account for this phenomenon is that food availability is elevated in urban areas, which improves the energetic status of urban birds and enables them to initiate gonad development earlier than their non-urban conspecifics. However, this hypothesis remains largely untested.

My dissertation dovetailed comparative studies and experimental approaches conducted in field and captive settings to examine the physiological mechanisms by which food availability modulates gonad growth and to investigate whether elevated food availability in urban areas advances the phenology of gonad growth in urban birds. My captive study demonstrated that energetic status modulates reproductive hormone secretion, but not gonad growth. By contrast, free-ranging urban and non-urban birds did not differ in energetic status or plasma levels of reproductive hormones either in years in which urban birds had advanced phenology of gonad growth or in a year that had no habitat-related disparity in seasonal gonad growth. Therefore, my dissertation provides no support for the hypothesis that urban birds begin seasonal gonad growth because they are in better energetic status and increase the secretion of reproductive hormones earlier than non-urban birds. My studies do suggest, however, that the phenology of key food items and the endocrine responsiveness of the reproductive system may contribute to habitat-related disparities in the phenology of gonad growth.
ContributorsDavies, Scott (Author) / Deviche, Pierre (Thesis advisor) / Sweazea, Karen (Committee member) / McGraw, Kevin (Committee member) / Orchinik, Miles (Committee member) / Warren, Paige (Committee member) / Arizona State University (Publisher)
Created2014
155697-Thumbnail Image.png
Description
Many animals thermoregulate to maximize performance. However, interactions with other animals, such as competitors or predators, limit access to preferred microclimates. For instance, an animal may thermoregulate poorly when fighting rivals or avoiding predators. However, the distribution of thermal resources should influence how animals perceive and respond to risk. When

Many animals thermoregulate to maximize performance. However, interactions with other animals, such as competitors or predators, limit access to preferred microclimates. For instance, an animal may thermoregulate poorly when fighting rivals or avoiding predators. However, the distribution of thermal resources should influence how animals perceive and respond to risk. When thermal resources are concentrated in space, individuals compete for access, which presumably reduces the thermoregulatory performance while making their location more predictable to predators. Conversely, when thermal resources are dispersed, several individuals can thermoregulate effectively without occupying the same area. Nevertheless, interactions with competitors or predators impose a potent stress, often resulting in both behavioral and physiological changes that influence thermoregulation. To assess the costs of intraspecific competition and predation risk during thermoregulation, I measured thermoregulation, movement, and hormones of male lizards (Sceloporus jarrovi) in experiment landscapes, with clumped to patchy distributions of microclimates. I found lizards aggressively competed for access to microclimates, with larger males gaining priority access when thermal resources were aggregated. Competition reduced thermoregulatory performance, increased movements, and elevated plasma corticosterone in large and small males. However, the magnitude of these responses decreased as the patchiness of the thermal environment increased. Similarly, under simulated predation risk, lizards reduced thermoregulatory performance, decreased movements, and elevated plasma corticosterone. Again, with the magnitude of these responses decreased with increasing thermal patchiness. Interestingly, even without competitors or predators, lizards in clumped arenas moved greater distances and circulated more corticosterone than did lizards in patchy arenas, indicating the thermal quality of the thermal landscape affected the energetic demands on lizards. Thus, biologists should consider species interactions and spatial structure when modeling impacts of climate change on thermoregulation.
ContributorsRusch, Travis W (Author) / Angilletta, Michael (Thesis advisor) / Sears, Mike (Committee member) / DeNardo, Dale (Committee member) / Deviche, Pierre (Committee member) / McGraw, Kevin (Committee member) / Arizona State University (Publisher)
Created2017
155537-Thumbnail Image.png
Description
The molt from pupae to adult stage, called eclosion, occurs at specific times of the day in many holometabolous insects. These events are not well studied within Lepidopteran species. It was hypothesized that the eclosion timing in a species may be shaped by strong selective pressures, such as sexual selection

The molt from pupae to adult stage, called eclosion, occurs at specific times of the day in many holometabolous insects. These events are not well studied within Lepidopteran species. It was hypothesized that the eclosion timing in a species may be shaped by strong selective pressures, such as sexual selection in the context of male-male competition. The daily timing of eclosion was measured for six species of nymphalid butterflies. This was done by rearing individuals to pupation, placing the pupa in a greenhouse, and video recording eclosion to obtain the time of day at which it occurred. Four species exhibited clustered eclosion distributions that were concentrated to within 201 minutes after sunrise and were significantly different from one another. The other two species exhibited eclosion times that were non-clustered. There were no differences between sexes within species. The data support a relationship between the timing of eclosion each day and the timing of mating activities, but other as of yet undetermined selective pressures may also influence eclosion timing.
ContributorsSencio, Kaylon (Author) / Rutowski, Ron (Thesis advisor) / McGraw, Kevin (Committee member) / Pratt, Stephen (Committee member) / Arizona State University (Publisher)
Created2017
156116-Thumbnail Image.png
Description
Immunotherapy has been revitalized with the advent of immune checkpoint blockade

treatments, and neo-antigens are the targets of immune system in cancer patients who

respond to the treatments. The cancer vaccine field is focused on using neo-antigens from

unique point mutations of genomic sequence in the cancer patient for making

personalized cancer vaccines. However,

Immunotherapy has been revitalized with the advent of immune checkpoint blockade

treatments, and neo-antigens are the targets of immune system in cancer patients who

respond to the treatments. The cancer vaccine field is focused on using neo-antigens from

unique point mutations of genomic sequence in the cancer patient for making

personalized cancer vaccines. However, we choose a different path to find frameshift

neo-antigens at the mRNA level and develop broadly effective cancer vaccines based on

frameshift antigens.

In this dissertation, I have summarized and characterized all the potential frameshift

antigens from microsatellite regions in human, dog and mouse. A list of frameshift

antigens was validated by PCR in tumor samples and the mutation rate was calculated for

one candidate – SEC62. I develop a method to screen the antibody response against

frameshift antigens in human and dog cancer patients by using frameshift peptide arrays.

Frameshift antigens selected by positive antibody response in cancer patients or by MHC

predictions show protection in different mouse tumor models. A dog version of the

cancer vaccine based on frameshift antigens was developed and tested in a small safety

trial. The results demonstrate that the vaccine is safe and it can induce strong B and T cell

immune responses. Further, I built the human exon junction frameshift database which

includes all possible frameshift antigens from mis-splicing events in exon junctions, and I

develop a method to find potential frameshift antigens from large cancer

immunosignature dataset with these databases. In addition, I test the idea of ‘early cancer

diagnosis, early treatment’ in a transgenic mouse cancer model. The results show that

ii

early treatment gives significantly better protection than late treatment and the correct

time point for treatment is crucial to give the best clinical benefit. A model for early

treatment is developed with these results.

Frameshift neo-antigens from microsatellite regions and mis-splicing events are

abundant at mRNA level and they are better antigens than neo-antigens from point

mutations in the genomic sequences of cancer patients in terms of high immunogenicity,

low probability to cause autoimmune diseases and low cost to develop a broadly effective

vaccine. This dissertation demonstrates the feasibility of using frameshift antigens for

cancer vaccine development.
ContributorsZhang, Jian (Author) / Johnston, Stephen Albert (Thesis advisor) / Chang, Yung (Committee member) / Stafford, Phillip (Committee member) / Chen, Qiang (Committee member) / Arizona State University (Publisher)
Created2018
155475-Thumbnail Image.png
Description
In wild birds, the stress response can inhibit the activity of the innate immune system, which serves as the first line of defense against pathogens. By elucidating the mechanisms which regulate the interaction between stress and innate immunity, researchers may be able to predict when birds experience increased susceptibility to

In wild birds, the stress response can inhibit the activity of the innate immune system, which serves as the first line of defense against pathogens. By elucidating the mechanisms which regulate the interaction between stress and innate immunity, researchers may be able to predict when birds experience increased susceptibility to infections and can target specific mediators to mitigate stress-induced suppression of innate immune activity. Such elucidation is especially important for urban birds, such as the House Sparrow (Passer domesticus), because these birds experience higher pathogen prevalence and transmission when compared to birds in rural regions. I investigated the role of corticosterone (CORT) in stress-induced suppression of two measures of innate immune activity (complement- and natural antibody-mediated activity) in male House Sparrows. Corticosterone, the primary avian glucocorticoid, is elevated during the stress response and high levels of this hormone induce effects through the activation of cytosolic and membrane-bound glucocorticoid receptors (GR). My results demonstrate that CORT is necessary and sufficient for stress-induced suppression of complement-mediated activity, and that this relationship is consistent between years. Corticosterone, however, does not inhibit complement-mediated activity through cytosolic GR, and additional research is needed to confirm the involvement of membrane-bound GR. The role of CORT in stress-induced inhibition of natural antibody-mediated activity, however, remains puzzling. Stress-induced elevation of CORT can suppress natural antibody-mediated activity through the activation of cytosolic GR, but the necessity of this mechanism varies inter-annually. In other words, both CORT-dependent and CORT-independent mechanisms may inhibit natural antibody-mediated activity during stress in certain years, but the causes of this inter-annual variation are not known. Previous studies have indicated that changes in the pathogen environment or food availability can alter regulation of innate immunity, but further research is needed to test these hypotheses. Overall, my dissertation demonstrates that stress inhibits innate immunity through several mechanisms, but environmental pressures may influence this inhibitory relationship.
ContributorsGao, Sisi (Author) / Deviche, Pierre (Thesis advisor) / DeNardo, Dale (Committee member) / McGraw, Kevin (Committee member) / Orchinik, Miles (Committee member) / Moore, Michael C. (Committee member) / Arizona State University (Publisher)
Created2017
157947-Thumbnail Image.png
Description
Flaviviruses (FVs) are among the most medically important arboviruses of the world with the Dengue virus (DENV) accounting for a large percentage of infections observed in tropical and subtropical regions of the world. Globalization, travel, and the expanding range of mosquito vectors, such as Aedes aegypti, have increased the potential

Flaviviruses (FVs) are among the most medically important arboviruses of the world with the Dengue virus (DENV) accounting for a large percentage of infections observed in tropical and subtropical regions of the world. Globalization, travel, and the expanding range of mosquito vectors, such as Aedes aegypti, have increased the potential of infection rates and illnesses associated with FVs.

The DENV and the Zika (ZIKV) FVs frequently co-circulate and generally cause mild self-liming febrile illnesses. However, a secondary infection with a heterologous DENV serotype may lead to life threatening dengue hemorrhagic fever (DHF) and dengue shock syndrome (DSS). DHF/DSS have been linked to antibody dependent enhancement of infection (ADE), a phenomenon that occurs when antibodies (Abs) formed against an initial infection with one serotype of DENV cross-reacts but does not neutralize a heterologous DENV serotype in a secondary infection. Furthermore, Abs raised against the ZIKV have been observed to cross-react with the DENV and vice versa, which can potentially cause ADE and lead to severe DENV disease. The ZIKV can be transmitted vertically and has been linked to devastating congenital defects such as microcephaly in newborns. FDA approved treatments do not exist for DENV and ZIKV illnesses. Thus, there is a need for safe and effective treatments for these co-circulating viruses. Here, a tetravalent bispecific antibody (bsAb) targeting the ZIKV and all four serotypes of the DENV was expressed in the Nicotiana benthamiana (N. benthamiana) plant. Functional assays of the DENV/ZIKV bsAb demonstrated binding, neutralization, and a significant reduction in ADE activity against both the DENV and the ZIKV.

A single chain variable fragment (scFv) and a diabody based on an antibody directed against the immune checkpoint inhibitor PD-L1, were also expressed in N. benthamiana leaves. The smaller sizes of the scFv and diabody confers them with the ability to penetrate deeper tissues making them beneficial in diagnostics, imaging, and possibly cancer therapy. The past few decades has seen long strives in recombinant protein production in plants with significant improvements in production, safety, and efficacy. These characteristics make plants an attractive platform for the production of recombinant proteins, biologics, and therapeutics.
ContributorsEsqueda, Adrian (Author) / Chen, Qiang (Thesis advisor) / Arntzen, Charles (Committee member) / Lake, Douglas (Committee member) / Mason, Hugh (Committee member) / Arizona State University (Publisher)
Created2019
161690-Thumbnail Image.png
Description
Despite theoretical models predicting that signals should only evolve if they convey honest information, dishonest signals may persist. Interestingly, crustaceans have been crucial in furthering biologists understanding of how and why dishonest signals persist; because many crustaceans wield claws that function as dishonest signals. For example, male fiddler crabs have

Despite theoretical models predicting that signals should only evolve if they convey honest information, dishonest signals may persist. Interestingly, crustaceans have been crucial in furthering biologists understanding of how and why dishonest signals persist; because many crustaceans wield claws that function as dishonest signals. For example, male fiddler crabs have claws that grow to large sizes but are incapable of inflicting severe damage to opponents, thus acting as a dishonest signal of their strength. Although initial work suggested that dishonest signaling was common throughout Crustacea, biologists understanding of the generality of dishonest communication is lacking. To resolve these issues, I combined morphological, behavioral, and comparative studies to investigate whether crayfish engage in dishonest communication. First, I found that regenerated claws in virile crayfish (Faxonius virilis) produce 40% weaker pinching forces compared to original claws. These results suggest that claw regeneration in crayfish may be the functional mechanism that produces dishonest signals. Second, I conducted two studies that investigated what traits determine dominance in staged contests; one on intrasexual contests in both male and female F. virilis, and a second between intra- and interspecific contests between male F. virilis and male red swamp crayfish (Procambarus clarkii). In both studies, I did not find support the hypothesis that large but weak claws function as dishonest signals; because claw size did not predict the outcome of signaling interactions and claw strength did not predict the outcome of physical fights. Lastly, I conducted a comparative study between six species of crayfish — three stream-dwelling species that use their claws as weapons and signals, and three burrowing species that use their claws for excavating burrows. Despite all six species possessing claws that unreliably predicted claw strength, I found no support for the hypothesis that their claws function as dishonest signals in any of these species. Thus, my dissertation results suggest that despite having claws that unreliably predict their strength, such unreliable signals do not equate to dishonest signals. Altogether, my work highlights the importance of collecting behavioral data in studies of dishonest communication and stresses the importance of separating unreliable signals from dishonest signals.
ContributorsGraham, Zackary (Author) / Angilletta, Michael (Thesis advisor) / Martins, Emilia (Committee member) / McGraw, Kevin (Committee member) / Pratt, Stephen (Committee member) / Wilson, Robbie (Committee member) / Arizona State University (Publisher)
Created2021
161233-Thumbnail Image.png
Description
Influenza is a deadly disease that poses a major threat to global health. The surface proteins of influenza A, the type most often associated with epidemics and pandemics, mutate at a very high frequency from season to season, reducing the efficacy of seasonal influenza vaccines. However, certain regions of these

Influenza is a deadly disease that poses a major threat to global health. The surface proteins of influenza A, the type most often associated with epidemics and pandemics, mutate at a very high frequency from season to season, reducing the efficacy of seasonal influenza vaccines. However, certain regions of these proteins are conserved between strains of influenza A, making them attractive targets for the development of a ‘universal’ influenza vaccine. One of these highly conserved regions is the ectodomain of the influenza matrix 2 protein (M2e). Studies have shown that M2e is poorly immunogenic on its own, but when properly adjuvanted it can be used to induce protective immune responses against many strains of influenza A. In this thesis, M2e was fused to a pair experimental ‘vaccine platforms’: an antibody fusion protein designed to assemble into a recombinant immune complex (RIC) and the hepatitis B core antigen (HBc) that can assemble into virus-like particles (VLP). The two antigens were produced in Nicotiana benthamiana plants through the use of geminiviral vectors and were subsequently evaluated in mouse trials. Mice were administered three doses of either the VLP alone or a 1:1 combination of the VLP and the RIC, and recipients of both the VLP and RIC exhibited endpoint anti-M2e antibody titers that were 2 to 3 times higher than mice that received the VLP alone. While IgG2a:IgG1 ratios, which can suggest the type of immune response (TH1 vs TH2) an antigen will elicit, were higher in mice vaccinated solely with the VLP, the higher overall titers are encouraging and demonstrate a degree of interaction between the RIC and VLP vaccines. Further research is necessary to determine the optimal balance of VLP and RIC to maximize IgG2a:IGg1 ratios as well as whether such interaction would be observed through the use of a variety of diverse antigens, though the results of other studies conducted in this lab suggests that this is indeed the case. The results of this study demonstrate not only the successful development of a promising new universal influenza A vaccine, but also that co-delivering different types of recombinant vaccines could reduce the total number of vaccine doses needed to achieve a protective immune response.
ContributorsFavre, Brandon Chetan (Author) / Mason, Hugh S (Thesis advisor) / Mor, Tsafrir (Committee member) / Chen, Qiang (Committee member) / Arizona State University (Publisher)
Created2019
161269-Thumbnail Image.png
Description
Environmental stressors can perturb cellular homeostasis. Cells activate an integrated stress response that will alleviate the effects of the ongoing stress. Stress-activated protein kinases function to phosphorylate the eukaryotic translation initiation factor, eIF2α, which results in inhibition of translation of house-keeping genes. Following these events, formation of cytoplasmic messenger ribonucleoprotein

Environmental stressors can perturb cellular homeostasis. Cells activate an integrated stress response that will alleviate the effects of the ongoing stress. Stress-activated protein kinases function to phosphorylate the eukaryotic translation initiation factor, eIF2α, which results in inhibition of translation of house-keeping genes. Following these events, formation of cytoplasmic messenger ribonucleoprotein complexes, known as stress granules, will take place. Stress granules typically have a pro-survival function. These studies demonstrate that assembly of stress granules can also lead to necroptosis. Necroptosis is a caspase-independent, receptor-interacting protein kinase 3 (RIPK3)-dependent cell death pathway executed by mixed lineage kinase domain-like (MLKL) protein. Cellular stress is induced using arsenite (oxidative stress) or by infection with vaccinia virus (VACV) E3 protein Z-DNA-binding domain mutant, VACV-E3LΔ83N. In both cases, RIPK3-dependent death was observed in interferon (IFN)-primed L929 cells. This death led to phosphorylation and trimerization of MLKL, indicative of necroptosis. Necroptosis induced by oxidative stress and VACV-E3LΔ83N infection was dependent on the host Z-form nucleic acid sensor, DNA-dependent activator of IFN-regulatory factors (DAI), as it was inhibited in DAI-deficient L929 cells. Under both cellular stresses, DAI associated with RIPK3 and formed high-molecular-weight complexes, consistent with formation of the necrosomes. DAI localized into stress granules during necroptosis induced by arsenite and the mutant virus, and the necrosomes formed only in presence of stress granule assembly. The significance of stress granules for cellular stress-induced necroptosis was demonstrated using knock-out (KO) cell lines unable to form granules: T cell-restricted intracellular antigen 1 (TIA-1) KO MEF cells and Ras GTPase-activating protein-binding proteins 1 and 2 (G3BP1/2) KO U2OS cells. Necroptosis was inhibited in absence of stress granule formation as no cell death or activation of MLKL was observed in the knock-out cell lines following arsenite treatment or VACV-E3LΔ83N infection. Furthermore, wild-type VACV was able to inhibit stress granule assembly, which coincided with the virus ability to inhibit necroptosis. These studies have led to a model of Z-form nucleic acids being involved in activation of the stress granule-mediated necroptosis following induction by environmental stressors. These results have significance for understanding the etiology of human diseases and the antiviral innate immunity.
ContributorsSzczerba, Mateusz Bartlomiej (Author) / Jacobs, Bertram L (Thesis advisor) / Langland, Jeffrey (Committee member) / Lake, Douglas (Committee member) / Chen, Qiang (Committee member) / Arizona State University (Publisher)
Created2021
Description

Introduction: Urbanization can considerably impact animal ecology, evolution, and behavior. Among the new conditions that animals experience in cities is anthropogenic noise, which can limit the sound space available for animals to communicate using acoustic signals. Some urban bird species increase their song frequencies so that they can be heard above

Introduction: Urbanization can considerably impact animal ecology, evolution, and behavior. Among the new conditions that animals experience in cities is anthropogenic noise, which can limit the sound space available for animals to communicate using acoustic signals. Some urban bird species increase their song frequencies so that they can be heard above low-frequency background city noise. However, the ability to make such song modifications may be constrained by several morphological factors, including bill gape, size, and shape, thereby limiting the degree to which certain species can vocally adapt to urban settings. We examined the relationship between song characteristics and bill morphology in a species (the house finch, Haemorhous mexicanus) where both vocal performance and bill size are known to differ between city and rural animals.

Results: We found that bills were longer and narrower in more disturbed, urban areas. We observed an increase in minimum song frequency of urban birds, and we also found that the upper frequency limit of songs decreased in direct relation to bill morphology.

Conclusions: These findings are consistent with the hypothesis that birds with longer beaks and therefore longer vocal tracts sing songs with lower maximum frequencies because longer tubes have lower-frequency resonances. Thus, for the first time, we reveal dual constraints (one biotic, one abiotic) on the song frequency range of urban animals. Urban foraging pressures may additionally interact with the acoustic environment to shape bill traits and vocal performance.

ContributorsGiraudeau, Mathieu (Author) / Nolan, Paul M. (Author) / Black, Caitlin E. (Author) / Earl, Stevan (Author) / Hasegawa, Masaru (Author) / McGraw, Kevin (Author) / College of Liberal Arts and Sciences (Contributor)
Created2014-11-12