Matching Items (247)
149725-Thumbnail Image.png
Description
Infections caused by the Hepatitis C Virus (HCV) are very common worldwide, affecting up to 3% of the population. Chronic infection of HCV may develop into liver cirrhosis and liver cancer which is among the top five of the most common cancers. Therefore, vaccines against HCV are under intense study

Infections caused by the Hepatitis C Virus (HCV) are very common worldwide, affecting up to 3% of the population. Chronic infection of HCV may develop into liver cirrhosis and liver cancer which is among the top five of the most common cancers. Therefore, vaccines against HCV are under intense study in order to prevent HCV from harming people's health. The envelope protein 2 (E2) of HCV is thought to be a promising vaccine candidate because it can directly bind to a human cell receptor and plays a role in viral entry. However, the E2 protein production in cells is inefficient due to its complicated matured structure. Folding of E2 in the endoplasmic reticulum (ER) is often error-prone, resulting in production of aggregates and misfolded proteins. These incorrect forms of E2 are not functional because they are not able to bind to human cells and stimulate antibody response to inhibit this binding. This study is aimed to overcome the difficulties of HCV E2 production in plant system. Protein folding in the ER requires great assistance from molecular chaperones. Thus, in this study, two molecular chaperones in the ER, calreticulin and calnexin, were transiently overexpressed in plant leaves in order to facilitate E2 folding and production. Both of them showed benefits in increasing the yield of E2 and improving the quality of E2. In addition, poorly folded E2 accumulated in the ER may cause stress in the ER and trigger transcriptional activation of ER molecular chaperones. Therefore, a transcription factor involved in this pathway, named bZIP60, was also overexpressed in plant leaves, aiming at up-regulating a major family of molecular chaperones called BiP to assist protein folding. However, our results showed that BiP mRNA levels were not up-regulated by bZIP60, but they increased in response to E2 expression. The Western blot analysis also showed that overexpression of bZIP60 had a small effect on promoting E2 folding. Overall, this study suggested that increasing the level of specific ER molecular chaperones was an effective way to promote HCV E2 protein production and maturation.
ContributorsHong, Fan (Author) / Mason, Hugh (Thesis advisor) / Gaxiola, Roberto (Committee member) / Chang, Yung (Committee member) / Chen, Qiang (Committee member) / Arizona State University (Publisher)
Created2011
149948-Thumbnail Image.png
Description
Libertarians affirm the right to liberty, i.e., the right to do what one wants free from interference. Libertarians also affirm the right to private property. One objection to libertarianism is that private property relations restrict liberty. This objection appears to have the consequence that libertarianism is an incoherent position. I

Libertarians affirm the right to liberty, i.e., the right to do what one wants free from interference. Libertarians also affirm the right to private property. One objection to libertarianism is that private property relations restrict liberty. This objection appears to have the consequence that libertarianism is an incoherent position. I examine Jan Narveson's version of the libertarian view and his defense of its coherence. Narveson understands the right to liberty as a prohibition on the initiation of force. I argue that if that is what the right to liberty is, then the enforcement of property rights violates it. I also examine Narveson's attempt to support private property with his distinction between interference with and mere prevention of activity and argue that this distinction does not do the work that he needs it to do. My conclusion is that libertarianism is, in a sense, impossible because conceptually unsound.
ContributorsSchimke, Christopher (Author) / de Marneffe, Peter (Thesis advisor) / McGregor, Joan (Committee member) / Blackson, Thomas (Committee member) / Arizona State University (Publisher)
Created2011
137695-Thumbnail Image.png
Description
The use of synthetic cathinones or "bath salts" has risen dramatically in recent years with one of the most popular being Methylendioxypyrovalerone (MDPV). Following the temporary legislative ban on the sale and distribution of this compound , a multitude of other cathinone derivatives have been synthesized. The current study seeks

The use of synthetic cathinones or "bath salts" has risen dramatically in recent years with one of the most popular being Methylendioxypyrovalerone (MDPV). Following the temporary legislative ban on the sale and distribution of this compound , a multitude of other cathinone derivatives have been synthesized. The current study seeks to compare the abuse potential of MDPV with one of the emergent synthetic cathinones 4-methylethcathinone (4-MEC), based on their respective ability to lower current thresholds in an intracranial self-stimulation (ICSS) paradigm. Following acute administration (0.1, 0.5, 1 and 2 mg/kg i.p.) MDPV was found to significantly lower ICSS thresholds at all doses tested (F4,35=11.549, p<0.001). However, following acute administration (0.3,1,3,10,30 mg/kg i.p) 4-MEC produced no significant ICSS threshold depression (F5,135= 0.622, p = 0.684). Together these findings suggest that while MDPV may possess significant abuse potential, other synthetic cathinones such as 4-MEC may have a drastically reduced potential for abuse.
ContributorsWegner, Scott Andrew (Author) / Olive, M. Foster (Thesis director) / Presson, Clark (Committee member) / Sanabria, Federico (Committee member) / Barrett, The Honors College (Contributor) / Department of Chemistry and Biochemistry (Contributor) / Department of Psychology (Contributor)
Created2013-05
151936-Thumbnail Image.png
Description
With the number of internationally-run clinical drug trials increasing, the double standards between those in developed nations and those in developing nations are being scrutinized under the ethical microscope. Many argue that several pharmaceutical companies and researchers are exploiting developing nation participants. Two issues of concern are the use of

With the number of internationally-run clinical drug trials increasing, the double standards between those in developed nations and those in developing nations are being scrutinized under the ethical microscope. Many argue that several pharmaceutical companies and researchers are exploiting developing nation participants. Two issues of concern are the use of a placebo control when an effective alternative treatment exists and the lack of drug availability to the country that hosted the clinical trial should the experimental drug prove effective. Though intuitively this seems like an instance of exploitation, philosophically, exploitation theories cannot adequately account for the wrongdoing in these cases. My project has two parts. First, after explaining why the theories of Alan Wertheimer, John Lawrence Hill, and Ruth Sample fail to explain the exploitation in clinical drug research, I provide an alternative account of exploitation that can explain why the double standard in clinical research is harmful. Rather than craft a single theory encompassing all instances of exploitation, I offer an account of a type, or subset, of exploitation that I refer to as comparative exploitation. The double standards in clinical research fall under the category of comparative exploitation. Furthermore, while many critics maintain that cases of comparative exploitation, including clinical research, are mutually beneficial, they are actually harmful to its victims. I explain the harm of comparative exploitation using Ben Bradley's counterfactual account of harm and Larry May's theory of sharing responsibility. The second part of my project focuses on the "standard of care" argument, which most defenders use to justify the double standard in clinical research. I elaborate on Ruth Macklin's position that advocates of the "standard of care" position make three faulty assumptions: placebo-controlled trials are the gold standard, the only relevant question responsive to the host country's health needs is "Is the experimental product being studied better than the 'nothing' now available to the population?", and the only way of obtaining affordable products is to test cheap alternatives to replace the expensive ones. In the end, I advocate moving towards a universalizing of standards in order to avoid exploitation.
ContributorsFundora, Danielle (Author) / McGregor, Joan (Thesis advisor) / Brake, Elizabeth (Committee member) / Portmore, Douglas (Committee member) / Arizona State University (Publisher)
Created2013
Description
Laboratory automation systems have seen a lot of technological advances in recent times. As a result, the software that is written for them are becoming increasingly sophisticated. Existing software architectures and standards are targeted to a wider domain of software development and need to be customized in order to use

Laboratory automation systems have seen a lot of technological advances in recent times. As a result, the software that is written for them are becoming increasingly sophisticated. Existing software architectures and standards are targeted to a wider domain of software development and need to be customized in order to use them for developing software for laboratory automation systems. This thesis proposes an architecture that is based on existing software architectural paradigms and is specifically tailored to developing software for a laboratory automation system. The architecture is based on fairly autonomous software components that can be distributed across multiple computers. The components in the architecture make use of asynchronous communication methodologies that are facilitated by passing messages between one another. The architecture can be used to develop software that is distributed, responsive and thread-safe. The thesis also proposes a framework that has been developed to implement the ideas proposed by the architecture. The framework is used to develop software that is scalable, distributed, responsive and thread-safe. The framework currently has components to control very commonly used laboratory automation devices such as mechanical stages, cameras, and also to do common laboratory automation functionalities such as imaging.
ContributorsKuppuswamy, Venkataramanan (Author) / Meldrum, Deirdre (Thesis advisor) / Collofello, James (Thesis advisor) / Sarjoughian, Hessam S. (Committee member) / Johnson, Roger (Committee member) / Arizona State University (Publisher)
Created2012
150746-Thumbnail Image.png
Description
At present, the ideological bias in the human enhancement debate holds that opponents to human enhancement are primarily techno-conservatives who, lacking any reasonable, systematic account of why we ought to be so opposed, simply resort to a sort of fear-mongering and anti-meliorism. This dissertation means to counteract said bias by

At present, the ideological bias in the human enhancement debate holds that opponents to human enhancement are primarily techno-conservatives who, lacking any reasonable, systematic account of why we ought to be so opposed, simply resort to a sort of fear-mongering and anti-meliorism. This dissertation means to counteract said bias by offering just such an account. Offered herein is a heuristic explanation of how, given a thorough understanding of enhancement both as a technology and as an attitude, we can predict a likely future of rampant commodification and dehumanization of man, and a veritable assault on human flourishing.
ContributorsMilleson, Valerye Michelle (Author) / McGregor, Joan (Thesis advisor) / Robert, Jason (Committee member) / French, Peter (Committee member) / Arizona State University (Publisher)
Created2012
150631-Thumbnail Image.png
Description
In the past 100 years pet, zoo/aquarium, and research animals have gained unprecedented legal protection from unnecessary human harm via the creation of strict animal cruelty laws. Due to the work of moral philosophers and compassionate lawyers/judges animal cruelty laws have been improved to provide harsher punishments for violations, had

In the past 100 years pet, zoo/aquarium, and research animals have gained unprecedented legal protection from unnecessary human harm via the creation of strict animal cruelty laws. Due to the work of moral philosophers and compassionate lawyers/judges animal cruelty laws have been improved to provide harsher punishments for violations, had their scopes widened to include more animals and had their language changed to better match our evolving conception of animals as independent living entities rather than as merely things for human use. However, while the group of pet, zoo/aquarium, and research animals has enjoyed more consideration by the US legal system, another group of animals has inexplicably been ignored. The farm animals that humans raise for use as food are exempted from nearly every state and federal animal cruelty law for no justifiable reason. In this paper I will argue that our best moral and legal theories concede that we should take animal suffering seriously, and that no relevant difference exists between the group of animals protected by animal cruelty laws and farm animals. Given the lack of a relevant distinction between these two groups I will conclude that current animal cruelty laws should be amended to include farm animals.
ContributorsDeCoster, Miles (Author) / McGregor, Joan (Thesis advisor) / Blackson, Thomas (Committee member) / Calhoun, Cheshire (Committee member) / Arizona State University (Publisher)
Created2012
151177-Thumbnail Image.png
Description
Single cell analysis has become increasingly important in understanding disease onset, progression, treatment and prognosis, especially when applied to cancer where cellular responses are highly heterogeneous. Through the advent of single cell computerized tomography (Cell-CT), researchers and clinicians now have the ability to obtain high resolution three-dimensional (3D) reconstructions of

Single cell analysis has become increasingly important in understanding disease onset, progression, treatment and prognosis, especially when applied to cancer where cellular responses are highly heterogeneous. Through the advent of single cell computerized tomography (Cell-CT), researchers and clinicians now have the ability to obtain high resolution three-dimensional (3D) reconstructions of single cells. Yet to date, no live-cell compatible version of the technology exists. In this thesis, a microfluidic chip with the ability to rotate live single cells in hydrodynamic microvortices about an axis parallel to the optical focal plane has been demonstrated. The chip utilizes a novel 3D microchamber design arranged beneath a main channel creating flow detachment into the chamber, producing recirculating flow conditions. Single cells are flowed through the main channel, held in the center of the microvortex by an optical trap, and rotated by the forces induced by the recirculating fluid flow. Computational fluid dynamics (CFD) was employed to optimize the geometry of the microchamber. Two methods for the fabrication of the 3D microchamber were devised: anisotropic etching of silicon and backside diffuser photolithography (BDPL). First, the optimization of the silicon etching conditions was demonstrated through design of experiment (DOE). In addition, a non-conventional method of soft-lithography was demonstrated which incorporates the use of two positive molds, one of the main channel and the other of the microchambers, compressed together during replication to produce a single ultra-thin (<200 µm) negative used for device assembly. Second, methods for using thick negative photoresists such as SU-8 with BDPL have been developed which include a new simple and effective method for promoting the adhesion of SU-8 to glass. An assembly method that bonds two individual ultra-thin (<100 µm) replications of the channel and the microfeatures has also been demonstrated. Finally, a pressure driven pumping system with nanoliter per minute flow rate regulation, sub-second response times, and < 3% flow variability has been designed and characterized. The fabrication and assembly of this device is inexpensive and utilizes simple variants of conventional microfluidic fabrication techniques, making it easily accessible to the single cell analysis community.
ContributorsMyers, Jakrey R (Author) / Meldrum, Deirdre (Thesis advisor) / Johnson, Roger (Committee member) / Frakes, David (Committee member) / Arizona State University (Publisher)
Created2012
136115-Thumbnail Image.png
Description
Background: Both puberty and diets composed of high levels of saturated fats have been shown to result in central adiposity, fasting hyperinsulinemia, insulin resistance and impaired glucose tolerance. While a significantly insulinogenic phenotypic change occurs in these two incidences, glucose homeostasis does not appear to be affected. Methods: Male, Sprague-dawley

Background: Both puberty and diets composed of high levels of saturated fats have been shown to result in central adiposity, fasting hyperinsulinemia, insulin resistance and impaired glucose tolerance. While a significantly insulinogenic phenotypic change occurs in these two incidences, glucose homeostasis does not appear to be affected. Methods: Male, Sprague-dawley rats were fed diets consisting of CHOW or low fat (LF), High Fat Diet and High Fat Diet (HFD) with supplementary Canola Oil (Monounsaturated fat). These rats were given these diets at 4-5 weeks old and given intraperitoneal and oral glucose tolerance tests(IPGTT; OGTT) at 4 and 8 weeks to further understand glucose and insulin behavior under different treatments. (IPGTT: LF-n=14, HFD-n=16, HFD+CAN-n=12; OGTT: LF-n=8, HFD-n=8, HFD+CAN-n=6). Results: When comparing LF fed rats at 8 weeks with 4 week glucose challenge test, area under the curve (AUC) of glucose was 1.2 that of 4 weeks. At 8 weeks, HFD fed rats AUCg was much greater than LF fed rats under both IPGTT and OGTT. When supplemented with Canola oil, HFD fed rats AUC returned to LF data range. Despite the alleviating glucose homeostasis affects of Canola oil the AUC of insulin curve, which was elevated by HFD, remained high. Conclusion: HFD in maturing rats elevates fasting insulin levels, increases insulin resistance and lowers glucose homeostasis. When given a monounsaturated fatty acid (MUFA) supplement fasting hyperinsulinemia, and late hyperinsulinemia still occur though glucose homeostasis is regained. For OGTT HFD also induced late hyper c-peptide levels and compared to LF and HFD+CAN, a higher c-peptide level over time.
ContributorsRay, Tyler John (Author) / Caplan, Michael (Thesis director) / Herman, Richard (Committee member) / Towner, Kali (Committee member) / Barrett, The Honors College (Contributor) / Department of Chemistry and Biochemistry (Contributor) / W. P. Carey School of Business (Contributor) / School of Human Evolution and Social Change (Contributor)
Created2015-05
136118-Thumbnail Image.png
Description
Nucleic acids encode the information required to create life, and polymerases are the gatekeepers charged with maintaining the storage and flow of this genetic information. Synthetic biologists utilize this universal property to modify organisms and other systems to create unique traits or improve the function of others. One of the

Nucleic acids encode the information required to create life, and polymerases are the gatekeepers charged with maintaining the storage and flow of this genetic information. Synthetic biologists utilize this universal property to modify organisms and other systems to create unique traits or improve the function of others. One of the many realms in synthetic biology involves the study of biopolymers that do not exist naturally, which is known as xenobiology. Although life depends on two biopolymers for genetic storage, it may be possible that alternative molecules (xenonucleic acids – XNAs), could be used in their place in either a living or non-living system. However, implementation of an XNA based system requires the development of polymerases that can encode and decode information stored in these artificial polymers. A strategy called directed evolution is used to modify or alter the function of a protein of interest, but identifying mutations that can modify polymerase function is made problematic by their size and overall complexity. To reduce the amount of sequence space that needs to be samples when attempting to identify polymerase variants, we can try to make informed decisions about which amino acid residues may have functional roles in catalysis. An analysis of Family B polymerases has shown that residues which are involved in substrate specificity are often highly conserved both at the sequence and structure level. In order to validate the hypothesis that a strong correlation exists between structural conservation and catalytic activity, we have selected and mutated residues in the 9°N polymerase using a loss of function mutagenesis strategy based on a computational analysis of several homologues from a diverse range of taxa. Improvement of these models will hopefully lead to quicker identification of loci which are ideal engineering targets.
ContributorsHaeberle, Tyler Matthew (Author) / Chaput, John (Thesis director) / Chen, Julian (Committee member) / Larsen, Andrew (Committee member) / Barrett, The Honors College (Contributor) / Department of Chemistry and Biochemistry (Contributor) / School of Life Sciences (Contributor)
Created2015-05