Matching Items (153)
149725-Thumbnail Image.png
Description
Infections caused by the Hepatitis C Virus (HCV) are very common worldwide, affecting up to 3% of the population. Chronic infection of HCV may develop into liver cirrhosis and liver cancer which is among the top five of the most common cancers. Therefore, vaccines against HCV are under intense study

Infections caused by the Hepatitis C Virus (HCV) are very common worldwide, affecting up to 3% of the population. Chronic infection of HCV may develop into liver cirrhosis and liver cancer which is among the top five of the most common cancers. Therefore, vaccines against HCV are under intense study in order to prevent HCV from harming people's health. The envelope protein 2 (E2) of HCV is thought to be a promising vaccine candidate because it can directly bind to a human cell receptor and plays a role in viral entry. However, the E2 protein production in cells is inefficient due to its complicated matured structure. Folding of E2 in the endoplasmic reticulum (ER) is often error-prone, resulting in production of aggregates and misfolded proteins. These incorrect forms of E2 are not functional because they are not able to bind to human cells and stimulate antibody response to inhibit this binding. This study is aimed to overcome the difficulties of HCV E2 production in plant system. Protein folding in the ER requires great assistance from molecular chaperones. Thus, in this study, two molecular chaperones in the ER, calreticulin and calnexin, were transiently overexpressed in plant leaves in order to facilitate E2 folding and production. Both of them showed benefits in increasing the yield of E2 and improving the quality of E2. In addition, poorly folded E2 accumulated in the ER may cause stress in the ER and trigger transcriptional activation of ER molecular chaperones. Therefore, a transcription factor involved in this pathway, named bZIP60, was also overexpressed in plant leaves, aiming at up-regulating a major family of molecular chaperones called BiP to assist protein folding. However, our results showed that BiP mRNA levels were not up-regulated by bZIP60, but they increased in response to E2 expression. The Western blot analysis also showed that overexpression of bZIP60 had a small effect on promoting E2 folding. Overall, this study suggested that increasing the level of specific ER molecular chaperones was an effective way to promote HCV E2 protein production and maturation.
ContributorsHong, Fan (Author) / Mason, Hugh (Thesis advisor) / Gaxiola, Roberto (Committee member) / Chang, Yung (Committee member) / Chen, Qiang (Committee member) / Arizona State University (Publisher)
Created2011
151304-Thumbnail Image.png
Description
Food system and health characteristics were evaluated across the last Waorani hunter-gatherer group in Amazonian Ecuador and a remote neighboring Kichwa indigenous subsistence agriculture community. Hunter-gatherer food systems like the Waorani foragers may not only be nutritionally, but also pharmaceutically beneficial because of high dietary intake of varied plant phytochemical

Food system and health characteristics were evaluated across the last Waorani hunter-gatherer group in Amazonian Ecuador and a remote neighboring Kichwa indigenous subsistence agriculture community. Hunter-gatherer food systems like the Waorani foragers may not only be nutritionally, but also pharmaceutically beneficial because of high dietary intake of varied plant phytochemical compounds. A modern diet that reduces these dietary plant defense phytochemicals below levels typical in human evolutionary history may leave humans vulnerable to diseases that were controlled through a foraging diet. Few studies consider the health impact of the recent drastic reduction of plant phytochemical content in the modern global food system, which has eliminated essential components of food because they are not considered "nutrients". The antimicrobial and anti-inflammatory nature of the food system may not only regulate infectious pathogens and inflammatory disease, but also support beneficial microbes in human hosts, reducing vulnerability to chronic diseases. Waorani foragers seem immune to certain infections with very low rates of chronic disease. Does returning to certain characteristics of a foraging food system begin to restore the human body microbe balance and inflammatory response to evolutionary norms, and if so, what implication does this have for the treatment of disease? Several years of data on dietary and health differences across the foragers and the farmers was gathered. There were major differences in health outcomes across the board. In the Waorani forager group there were no signs of infection in serious wounds such as 3rd degree burns and spear wounds. The foragers had one-degree lower body temperature than the farmers. The Waorani had an absence of signs of chronic diseases including vision and blood pressure that did not change markedly with age while Kichwa farmers suffered from both chronic diseases and physiological indicators of aging. In the Waorani forager population, there was an absence of many common regional infectious diseases, from helminthes to staphylococcus. Study design helped control for confounders (exercise, environment, genetic factors, non-phytochemical dietary intake). This study provides evidence of the major role total phytochemical dietary intake plays in human health, often not considered by policymakers and nutritional and agricultural scientists.
ContributorsLondon, Douglas (Author) / Tsuda, Takeyuki (Thesis advisor) / Beezhold, Bonnie L (Committee member) / Hruschka, Daniel (Committee member) / Eder, James (Committee member) / Arizona State University (Publisher)
Created2012
150816-Thumbnail Image.png
Description
Land management practices such as domestic animal grazing can alter plant communities via changes in soil structure and chemistry, species composition, and plant nutrient content. These changes can affect the abundance and quality of plants consumed by insect herbivores with consequent changes in population dynamics. These population changes can translate

Land management practices such as domestic animal grazing can alter plant communities via changes in soil structure and chemistry, species composition, and plant nutrient content. These changes can affect the abundance and quality of plants consumed by insect herbivores with consequent changes in population dynamics. These population changes can translate to massive crop damage and pest control costs. My dissertation focused on Oedaleus asiaticus, a dominant Asian locust, and had three main objectives. First, I identified morphological, physiological, and behavioral characteristics of the migratory ("brown") and non-migratory ("green") phenotypes. I found that brown morphs had longer wings, larger thoraxes and higher metabolic rates compared to green morphs, suggesting that developmental plasticity allows greater migratory capacity in the brown morph of this locust. Second, I tested the hypothesis of a causal link between livestock overgrazing and an increase in migratory swarms of O. asiaticus. Current paradigms generally assume that increased plant nitrogen (N) should enhance herbivore performance by relieving protein-limitation, increasing herbivorous insect populations. I showed, in contrast to this scenario, that host plant N-enrichment and high protein artificial diets decreased the size and viability of O. asiaticus. Plant N content was lowest and locust abundance highest in heavily livestock-grazed fields where soils were N-depleted, likely due to enhanced erosion and leaching. These results suggest that heavy livestock grazing promotes outbreaks of this locust by reducing plant protein content. Third, I tested for the influence of dietary imbalance, in conjunction with high population density, on migratory plasticity. While high population density has clearly been shown to induce the migratory morph in several locusts, the effect of diet has been unclear. I found that locusts reared at high population density and fed unfertilized plants (i.e. high quality plants for O. asiaticus) had the greatest migratory capacity, and maintained a high percent of brown locusts. These results did not support the hypothesis that poor-quality resources increased expression of migratory phenotypes. This highlights a need to develop new theoretical frameworks for predicting how environmental factors will regulate migratory plasticity in locusts and perhaps other insects.
ContributorsCease, Arianne (Author) / Harrison, Jon (Thesis advisor) / Elser, James (Thesis advisor) / DeNardo, Dale (Committee member) / Quinlan, Michael (Committee member) / Sabo, John (Committee member) / Arizona State University (Publisher)
Created2012
150552-Thumbnail Image.png
Description
This dissertation is intended to tie together a body of work which utilizes a variety of methods to study applied mathematical models involving heterogeneity often omitted with classical modeling techniques. I posit three cogent classifications of heterogeneity: physiological, behavioral, and local (specifically connectivity in this work). I consider physiological heterogeneity

This dissertation is intended to tie together a body of work which utilizes a variety of methods to study applied mathematical models involving heterogeneity often omitted with classical modeling techniques. I posit three cogent classifications of heterogeneity: physiological, behavioral, and local (specifically connectivity in this work). I consider physiological heterogeneity using the method of transport equations to study heterogeneous susceptibility to diseases in open populations (those with births and deaths). I then present three separate models of behavioral heterogeneity. An SIS/SAS model of gonorrhea transmission in a population of highly active men-who-have-sex-with-men (MSM) is presented to study the impact of safe behavior (prevention and self-awareness) on the prevalence of this endemic disease. Behavior is modeled in this examples via static parameters describing consistent condom use and frequency of STD testing. In an example of behavioral heterogeneity, in the absence of underlying dynamics, I present a generalization to ``test theory without an answer key" (also known as cultural consensus modeling or CCM). CCM is commonly used to study the distribution of cultural knowledge within a population. The generalized framework presented allows for selecting the best model among various extensions of CCM: multiple subcultures, estimating the degree to which individuals guess yes, and making competence homogenous in the population. This permits model selection based on the principle of information criteria. The third behaviorally heterogeneous model studies adaptive behavioral response based on epidemiological-economic theory within an $SIR$ epidemic setting. Theorems used to analyze the stability of such models with a generalized, non-linear incidence structure are adapted and applied to the case of standard incidence and adaptive incidence. As an example of study in spatial heterogeneity I provide an explicit solution to a generalization of the continuous time approximation of the Albert-Barabasi scale-free network algorithm. The solution is found by recursively solving the differential equations via integrating factors, identifying a pattern for the coefficients and then proving this observed pattern is consistent using induction. An application to disease dynamics on such evolving structures is then studied.
ContributorsMorin, Benjamin (Author) / Castillo-Chavez, Carlos (Thesis advisor) / Hiebeler, David (Thesis advisor) / Hruschka, Daniel (Committee member) / Suslov, Sergei (Committee member) / Arizona State University (Publisher)
Created2012
150474-Thumbnail Image.png
Description
Conditions during development can shape the expression of traits at adulthood, a phenomenon called developmental plasticity. In this context, factors such as nutrition or health state during development can affect current and subsequent physiology, body size, brain structure, ornamentation, and behavior. However, many of the links between developmental and adult

Conditions during development can shape the expression of traits at adulthood, a phenomenon called developmental plasticity. In this context, factors such as nutrition or health state during development can affect current and subsequent physiology, body size, brain structure, ornamentation, and behavior. However, many of the links between developmental and adult phenotype are poorly understood. I performed a series of experiments using a common molecular currency - carotenoid pigments - to track somatic and reproductive investments through development and into adulthood. Carotenoids are red, orange, or yellow pigments that: (a) animals must acquire from their diets, (b) can be physiologically beneficial, acting as antioxidants or immunostimulants, and (c) color the sexually attractive features (e.g., feathers, scales) of many animals. I studied how carotenoid nutrition and immune challenges during ontogeny impacted ornamental coloration and immune function of adult male mallard ducks (Anas platyrhynchos). Male mallards use carotenoids to pigment their yellow beak, and males with more beaks that are more yellow are preferred as mates, have increased immune function, and have higher quality sperm. In my dissertation work, I established a natural context for the role that carotenoids and body condition play in the formation of the adult phenotype and examined how early-life experiences, including immune challenges and dietary access to carotenoids, affect adult immune function and ornamental coloration. Evidence from mallard ducklings in the field showed that variation in circulating carotenoid levels at hatch are likely driven by maternal allocation of carotenoids, but that carotenoid physiology shifts during the subsequent few weeks to reflect individual foraging habits. In the lab, adult beak color expression and immune function were more tightly correlated with body condition during growth than body condition during subsequent stages of development or adulthood. Immune challenges during development affected adult immune function and interacted with carotenoid physiology during adulthood, but did not affect adult beak coloration. Dietary access to carotenoids during development, but not adulthood, also affected adult immune function. Taken together, these results highlight the importance of the developmental stage in shaping certain survival-related traits (i.e., immune function), and lead to further questions regarding the development of ornamental traits.
ContributorsButler, Michael (Author) / McGraw, Kevin J. (Thesis advisor) / Chang, Yung (Committee member) / Deviche, Pierre (Committee member) / DeNardo, Dale (Committee member) / Rutowski, Ronald (Committee member) / Arizona State University (Publisher)
Created2012
151199-Thumbnail Image.png
Description
Salmonella enterica is a gastrointestinal (GI) pathogen that can cause systemic diseases. It invades the host through the GI tract and can induce powerful immune responses in addition to disease. Thus, it is considered as a promising candidate to use as oral live vaccine vectors. Scientists have been making great

Salmonella enterica is a gastrointestinal (GI) pathogen that can cause systemic diseases. It invades the host through the GI tract and can induce powerful immune responses in addition to disease. Thus, it is considered as a promising candidate to use as oral live vaccine vectors. Scientists have been making great efforts to get a properly attenuated Salmonella vaccine strain for a long time, but could not achieve a balance between attenuation and immunogenicity. So the regulated delayed attenuation/lysis Salmonella vaccine vectors were proposed as a design to seek this balance. The research work is progressing steadily, but more improvements need to be made. As one of the possible improvements, the cyclic adenosine monophosphate (cAMP) -independent cAMP receptor protein (Crp*) is expected to protect the Crp-dependent crucial regulator, araC PBAD, in these vaccine designs from interference by glucose, which decreases synthesis of cAMP, and enhance the colonizing ability by and immunogenicity of the vaccine strains. In this study, the cAMP-independent crp gene mutation, crp-70, with or without araC PBAD promoter cassette, was introduced into existing Salmonella vaccine strains. Then the plasmid stability, growth rate, resistance to catabolite repression, colonizing ability, immunogenicity and protection to challenge of these new strains were compared with wild-type crp or araC PBAD crp strains using western blots, enzyme-linked immunosorbent assays (ELISA) and animal studies, so as to evaluate the effects of the crp-70 mutation on the vaccine strains. The performances of the crp-70 strains in some aspects were closed to or even exceeded the crp+ strains, but generally they did not exhibit the expected advantages compared to their wild-type parents. Crp-70 rescued the expression of araC PBAD fur from catabolite repression. The strain harboring araC PBAD crp-70 was severely affected by its slow growth, and its colonizing ability and immunogenicity was much weaker than the other strains. The Pcrp crp-70 strain showed relatively good ability in colonization and immune stimulation. Both the araC PBAD crp-70 and the Pcrp crp-70 strains could provide certain levels of protection against the challenge with virulent pneumococci, which were a little lower than for the crp+ strains.
ContributorsShao, Shihuan (Author) / Curtiss, Roy (Thesis advisor) / Arizona State University (Publisher)
Created2012
151122-Thumbnail Image.png
Description
Parental care provides many benefits to offspring. One widely realized benefit is enhanced regulation of offspring's thermal environment. The developmental thermal environment during development can be optimized behaviorally through nest site selection and brooding, and it can be further enhanced by physiological heat production. In fact, enhancement of the developmental

Parental care provides many benefits to offspring. One widely realized benefit is enhanced regulation of offspring's thermal environment. The developmental thermal environment during development can be optimized behaviorally through nest site selection and brooding, and it can be further enhanced by physiological heat production. In fact, enhancement of the developmental thermal environment has been proposed as the initial driving force for the evolution of endothermy in bird and mammals. I used pythons (Squamata: Pythonidae) to expand existing knowledge of behavioral and physiological parental tactics used to regulate offspring thermal environment. I first demonstrated that brooding behavior in the Children's python (Antaresia childreni) is largely driven by internal mechanisms, similar to solitary birds, suggesting that the early evolution of the parent-offspring association was probably hormonally driven. Two species of python are known to be facultatively thermogenic (i.e., are endothermic during reproduction). I expand current knowledge of thermogenesis in Burmese pythons (Python molurus) by demonstrating that females use their own body temperature to modulate thermogenesis. Although pythons are commonly cited as thermogenic, the actual extent of thermogenesis within the family Pythonidae is unknown. Thus, I assessed the thermogenic capability of five previously unstudied species of python to aid in understanding phylogenetic, morphological, and distributional influences on thermogenesis in pythons. Results suggest that facultative thermogenesis is likely rare among pythons. To understand why it is rare, I used an artificial model to demonstrate that energetic costs to the female likely outweigh thermal benefits to the clutch in species that do not inhabit cooler latitudes or lack large energy reserves. In combination with other studies, these results show that facultative thermogenesis during brooding in pythons likely requires particular ecological and physiological factors for its evolution.
ContributorsBrashears, Jake (Author) / DeNardo, Dale (Thesis advisor) / Harrison, Jon (Committee member) / Deviche, Pierre (Committee member) / McGraw, Kevin (Committee member) / Smith, Andrew (Committee member) / Arizona State University (Publisher)
Created2012
136417-Thumbnail Image.png
Description
Due to persistent undernutrition in India and the increased demands placed on a woman’s body during childbearing and lactation, the Indian government has implemented a program to provide supplemental nutrition packets to women in rural India. This study examines the factors influencing uptake of nutritional packets by lactating mothers in

Due to persistent undernutrition in India and the increased demands placed on a woman’s body during childbearing and lactation, the Indian government has implemented a program to provide supplemental nutrition packets to women in rural India. This study examines the factors influencing uptake of nutritional packets by lactating mothers in southern, rural Rajasthan. Women were recruited from 65 villages in Rajasthan, India (n=149, minimum of 2 per village) to evaluate the relationship of nutrition packet uptake and two factors--education levels and distance to the health center.
Level of education had little impact on whether or not women received the nutrition packet. Of those women with no education, 63.1% received the packet. Of those with any education, 63.9% got the packet.
In contrast, distance was strongly correlated with whether or not women received the packet. For example, of the women living within 200 meters of the health center, 93.2% received a nutrition packet. Of the women living between 250 meters and one kilometer of the health center, 68.4% received a nutrition packet. Of the women living over one kilometer from the health center, only 25% received a nutrition packet. The relationship between uptake of packets and women’s perception of distance to the health center was also explored. Out of 50 women who did not receive the packet, all of the women who said there was no health center in their village did live more than one kilometer from a health center. Of the women who lived between 250 meters and one kilometer from the health center, 40% felt it was too far. Of the women who lived more than a kilometer from the health center, 66.7% felt it was too far and 29.6% said there was no health center in their village. Again, it does not appear that ‘too far’ is just a default reason for women, but that actual distance, more so than education, is a major contributing factor in their ability to take the nutrition packet. These findings suggest that improving access to supplemental nutrition packets at the village level may increase uptake by the women.
ContributorsJeffers, Eva Marie (Author) / Hruschka, Daniel (Thesis director) / Maupin, Jonathan (Committee member) / Cook, Jeffrey (Committee member) / Barrett, The Honors College (Contributor) / School of Human Evolution and Social Change (Contributor)
Created2015-05
136192-Thumbnail Image.png
Description
Is it possible to treat the mouth as a natural environment, and determine new methods to keep the microbiome in check? The need for biodiversity in health may suggest that every species carries out a specific function that is required to maintain equilibrium and homeostasis within the oral cavity. Furthermore,

Is it possible to treat the mouth as a natural environment, and determine new methods to keep the microbiome in check? The need for biodiversity in health may suggest that every species carries out a specific function that is required to maintain equilibrium and homeostasis within the oral cavity. Furthermore, the relationship between the microbiome and its host is mutually beneficial because the host is providing microbes with an environment in which they can flourish and, in turn, keep their host healthy. Reviewing examples of larger scale environmental shifts could provide a window by which scientists can make hypotheses. Certain medications and healthcare treatments have been proven to cause xerostomia. This disorder is characterized by a dry mouth, and known to be associated with a change in the composition, and reduction, of saliva. Two case studies performed by Bardow et al, and Leal et al, tested and studied the relationships of certain medications and confirmed their side effects on the salivary glands [2,3]. Their results confirmed a relationship between specific medicines, and the correlating complaints of xerostomia. In addition, Vissink et al conducted case studies that helped to further identify how radiotherapy causes hyposalivation of the salivary glands [4]. Specifically patients that have been diagnosed with oral cancer, and are treated by radiotherapy, have been diagnosed with xerostomia. As stated prior, studies have shown that patients having an ecologically balanced and diverse microbiome tend to have healthier mouths. The oral cavity is like any biome, consisting of commensalism within itself and mutualism with its host. Due to the decreased salivary output, caused by xerostomia, increased parasitic bacteria build up within the oral cavity thus causing dental disease. Every human body contains a personalized microbiome that is essential to maintaining health but capable of eliciting disease. The Human Oral Microbiomics Database (HOMD) is a set of reference 16S rRNA gene sequences. These are then used to define individual human oral taxa. By conducting metagenomic experiments at the molecular and cellular level, scientists can identify and label micro species that inhabit the mouth during parasitic outbreaks or a shifting of the microbiome. Because the HOMD is incomplete, so is our ability to cure, or prevent, oral disease. The purpose of the thesis is to research what is known about xerostomia and its effects on the complex microbiome of the oral cavity. It is important that researchers determine whether this particular perspective is worth considering. In addition, the goal is to create novel experiments for treatment and prevention of dental diseases.
ContributorsHalcomb, Michael Jordan (Author) / Chen, Qiang (Thesis director) / Steele, Kelly (Committee member) / Barrett, The Honors College (Contributor) / College of Letters and Sciences (Contributor)
Created2015-05
135703-Thumbnail Image.png
Description
An organism's ability to maintain optimal body temperature is extremely important for sustaining physiological and behavioral processes necessary for survival. However, like other physiological systems, thermobiology can be influenced by the availability of resources. Water is a vital resource that has profound implications on many aspects of biological function, including

An organism's ability to maintain optimal body temperature is extremely important for sustaining physiological and behavioral processes necessary for survival. However, like other physiological systems, thermobiology can be influenced by the availability of resources. Water is a vital resource that has profound implications on many aspects of biological function, including thermoregulatory pathways. However, water availability has a tendency fluctuate within any given ecosystem. While several studies have investigated the influence of water availability on a range of thermoregulatory pathways, very little attention has been given to its influence on Voluntary Maximum Temperature (VMT). We investigated the effects of dehydration on Voluntary Maximum Temperature in a captive population of Gila monsters (Heloderma suspectum). Gila monsters are large-bodied, desert dwelling lizards that experience periods of seasonal dehydration. Additionally, the effects of dehydration on their physiology and behavior have been extensively studied. We hypothesized that dehydration would reduce VMT. As expected, there was a significant decrease in exit temperature as blood osmolality increased. This is presumed to be in an effort to decrease water loss. Adaptations that allow desert dwelling organisms to conserve water are highly advantageous due to seasonal water constraints. Our findings offer insight on how the behavior of these organisms may change in response to changes in climate.
ContributorsHartson, Callie Elizabeth (Author) / DeNardo, Dale (Thesis director) / Angilletta, Michael (Committee member) / Camacho, Agus (Committee member) / School of Life Sciences (Contributor) / School of Human Evolution and Social Change (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05