Matching Items (4)
Filtering by

Clear all filters

131560-Thumbnail Image.png
Description
Spaceflight and spaceflight analogue culture enhance the virulence and pathogenesis-related stress resistance of the foodborne pathogen Salmonella enterica serovar Typhimurium (S. Typhimurium). This is an alarming finding as it suggests that astronauts may have an increased risk of infection during spaceflight. This risk is further exacerbated as multiple studies indicate

Spaceflight and spaceflight analogue culture enhance the virulence and pathogenesis-related stress resistance of the foodborne pathogen Salmonella enterica serovar Typhimurium (S. Typhimurium). This is an alarming finding as it suggests that astronauts may have an increased risk of infection during spaceflight. This risk is further exacerbated as multiple studies indicate that spaceflight negatively impacts aspects of the immune system. In order to ensure astronaut safety during long term missions, it is important to study the phenotypic effects of the microgravity environment on a range of medically important microbial pathogens that might be encountered by the crew. This ground-based study uses the NASA-engineered Rotating Wall Vessel (RWV) bioreactor as a spaceflight analogue culture system to grow bacteria under low fluid shear forces relative to those encountered in microgravity, and interestingly, in the intestinal tract during infection. The culture environment in the RWV is commonly referred to as low shear modeled microgravity (LSMMG). In this study, we characterized the stationary phase stress response of the enteric pathogen, Salmonella enterica serovar Enteritidis (S. Enteritidis), to LSMMG culture. We showed that LSMMG enhanced the resistance of stationary phase cultures of S. Enteritidis to acid and thermal stressors, which differed from the LSSMG stationary phase response of the closely related pathovar, S. Typhimurium. Interestingly, LSMMG increased the ability of both S. Enteritidis and S. Typhimurium to adhere to, invade into, and survive within an in vitro 3-D intestinal co-culture model containing immune cells. Our results indicate that LSMMG regulates pathogenesis-related characteristics of S. Enteritidis in ways that may present an increased health risk to astronauts during spaceflight missions.
ContributorsKoroli, Sara (Author) / Nickerson, Cheryl (Thesis director) / Barrila, Jennifer (Committee member) / Ott, C. Mark (Committee member) / School of Life Sciences (Contributor) / School of Molecular Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
134136-Thumbnail Image.png
Description
Biomarkers are the cornerstone of modern-day medicine. They are defined as any biological substance in or outside the body that gives insight to the body's condition. Doctors and researchers can measure specific biomarkers to diagnose and treat patients, such as the concentration of hemoglobin Alc and its connection to diabetes.

Biomarkers are the cornerstone of modern-day medicine. They are defined as any biological substance in or outside the body that gives insight to the body's condition. Doctors and researchers can measure specific biomarkers to diagnose and treat patients, such as the concentration of hemoglobin Alc and its connection to diabetes. There are a variety of methods, or assays, to detect biomarkers, but the most common assay is enzyme-linked immunosorbent assay (ELISA). A new-generation assay termed mass spectrometric immunoassay (MSIA) can measure proteoforms, the different chemical variations of proteins, and their relative abundance. ELISA on the other hand measures the overall concentration of protein in the sample. Measuring each of the proteoforms of a protein is important because only one or two variations could be biologically significant and/or cause diseases. However, running MSIA is expensive. For this reason, an alternative plate-based MSIA technique was tested for its ability to detect the proteoforms of a protein called apolipoprotein C-III (ApoC-III). This technique combines the protein capturing procedure of ELISA to isolate the protein with detection in a mass spectrometer. A larger amount of ApoC-III present in the body indicates a considerable risk for coronary heart disease. The precision of the assay is determined on the coefficient of variation (CV). A CV value is the ratio of standard deviation in relation to the mean, represented as a percentage. The smaller the percentage, the less variation the assay has, and therefore the more ability it has to detect subtle changes in the biomarker. An accepted CV would be less than 10% for single-day tests (intra-day) and less than 15% for multi-day tests (inter-day). The plate-based MSIA was started by first coating a 96-well round bottom plate with 2.5 micrograms of ApoC-III antibody. Next, a series of steps were conducted: a buffer wash, then the sample incubation, followed by another buffer wash and two consecutive water washes. After the final wash, the wells were filled with a MALDI matrix, then spotted onto a gold plate to dry. The dry gold target was then placed into a MALDI-TOF mass spectrometer to produce mass spectra for each spot. The mass spectra were calibrated and the area underneath each of the four peaks representing the ApoC-III proteoforms was exported as an Excel file. The intra-day CV values were found by dividing the standard deviation by the average relative abundance of each peak. After repeating the same procedure for three more days, the inter-day CVs were found using the same method. After completing the experiment, the CV values were all within the acceptable guidelines. Therefore, the plate-based MSIA is a viable alternative for finding proteoforms than the more expensive MSIA tips. To further validate this, additional tests will need to be conducted with different proteins and number of samples to determine assay flexibility.
ContributorsTieu, Luc (Author) / Borges, Chad (Thesis director) / Nedelkov, Dobrin (Committee member) / Harrington Bioengineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2017-12
154601-Thumbnail Image.png
Description
The emergence of invasive non-Typhoidal Salmonella (iNTS) infections belonging to sequence type (ST) 313 are associated with severe bacteremia and high mortality in sub-Saharan Africa. Distinct features of ST313 strains include resistance to multiple antibiotics, extensive genomic degradation, and atypical clinical diagnosis including bloodstream infections, respiratory symptoms, and fever. Herein,

The emergence of invasive non-Typhoidal Salmonella (iNTS) infections belonging to sequence type (ST) 313 are associated with severe bacteremia and high mortality in sub-Saharan Africa. Distinct features of ST313 strains include resistance to multiple antibiotics, extensive genomic degradation, and atypical clinical diagnosis including bloodstream infections, respiratory symptoms, and fever. Herein, I report the use of dynamic bioreactor technology to profile the impact of physiological fluid shear levels on the pathogenesis-related responses of ST313 pathovar, 5579. I show that culture of 5579 under these conditions induces profoundly different pathogenesis-related phenotypes than those normally observed when cultures are grown conventionally. Surprisingly, in response to physiological fluid shear, 5579 exhibited positive swimming motility, which was unexpected, since this strain was initially thought to be non-motile. Moreover, fluid shear altered the resistance of 5579 to acid, oxidative and bile stress, as well as its ability to colonize human colonic epithelial cells. This work leverages from and advances studies over the past 16 years in the Nickerson lab, which are at the forefront of bacterial mechanosensation and further demonstrates that bacterial pathogens are “hardwired” to respond to the force of fluid shear in ways that are not observed during conventional culture, and stresses the importance of mimicking the dynamic physical force microenvironment when studying host-pathogen interactions. The results from this study lay the foundation for future work to determine the underlying mechanisms operative in 5579 that are responsible for these phenotypic observations.
ContributorsCastro, Christian (Author) / Nickerson, Cheryl A. (Thesis advisor) / Ott, C. Mark (Committee member) / Roland, Kenneth (Committee member) / Barrila, Jennifer (Committee member) / Arizona State University (Publisher)
Created2016
158291-Thumbnail Image.png
Description
This thesis introduces new techniques for clustering distributional data according to their geometric similarities. This work builds upon the optimal transportation (OT) problem that seeks global minimum cost for matching distributional data and leverages the connection between OT and power diagrams to solve different clustering problems. The OT formulation is

This thesis introduces new techniques for clustering distributional data according to their geometric similarities. This work builds upon the optimal transportation (OT) problem that seeks global minimum cost for matching distributional data and leverages the connection between OT and power diagrams to solve different clustering problems. The OT formulation is based on the variational principle to differentiate hard cluster assignments, which was missing in the literature. This thesis shows multiple techniques to regularize and generalize OT to cope with various tasks including clustering, aligning, and interpolating distributional data. It also discusses the connections of the new formulation to other OT and clustering formulations to better understand their gaps and the means to close them. Finally, this thesis demonstrates the advantages of the proposed OT techniques in solving machine learning problems and their downstream applications in computer graphics, computer vision, and image processing.
ContributorsMi, Liang (Author) / Wang, Yalin (Thesis advisor) / Chen, Kewei (Committee member) / Karam, Lina (Committee member) / Li, Baoxin (Committee member) / Turaga, Pavan (Committee member) / Arizona State University (Publisher)
Created2020