Matching Items (89)
149730-Thumbnail Image.png
Description
Nonlinear dispersive equations model nonlinear waves in a wide range of physical and mathematics contexts. They reinforce or dissipate effects of linear dispersion and nonlinear interactions, and thus, may be of a focusing or defocusing nature. The nonlinear Schrödinger equation or NLS is an example of such equations. It appears

Nonlinear dispersive equations model nonlinear waves in a wide range of physical and mathematics contexts. They reinforce or dissipate effects of linear dispersion and nonlinear interactions, and thus, may be of a focusing or defocusing nature. The nonlinear Schrödinger equation or NLS is an example of such equations. It appears as a model in hydrodynamics, nonlinear optics, quantum condensates, heat pulses in solids and various other nonlinear instability phenomena. In mathematics, one of the interests is to look at the wave interaction: waves propagation with different speeds and/or different directions produces either small perturbations comparable with linear behavior, or creates solitary waves, or even leads to singular solutions. This dissertation studies the global behavior of finite energy solutions to the $d$-dimensional focusing NLS equation, $i partial _t u+Delta u+ |u|^{p-1}u=0, $ with initial data $u_0in H^1,; x in Rn$; the nonlinearity power $p$ and the dimension $d$ are chosen so that the scaling index $s=frac{d}{2}-frac{2}{p-1}$ is between 0 and 1, thus, the NLS is mass-supercritical $(s>0)$ and energy-subcritical $(s<1).$ For solutions with $ME[u_0]<1$ ($ME[u_0]$ stands for an invariant and conserved quantity in terms of the mass and energy of $u_0$), a sharp threshold for scattering and blowup is given. Namely, if the renormalized gradient $g_u$ of a solution $u$ to NLS is initially less than 1, i.e., $g_u(0)<1,$ then the solution exists globally in time and scatters in $H^1$ (approaches some linear Schr"odinger evolution as $ttopminfty$); if the renormalized gradient $g_u(0)>1,$ then the solution exhibits a blowup behavior, that is, either a finite time blowup occurs, or there is a divergence of $H^1$ norm in infinite time. This work generalizes the results for the 3d cubic NLS obtained in a series of papers by Holmer-Roudenko and Duyckaerts-Holmer-Roudenko with the key ingredients, the concentration compactness and localized variance, developed in the context of the energy-critical NLS and Nonlinear Wave equations by Kenig and Merle. One of the difficulties is fractional powers of nonlinearities which are overcome by considering Besov-Strichartz estimates and various fractional differentiation rules.
ContributorsGuevara, Cristi Darley (Author) / Roudenko, Svetlana (Thesis advisor) / Castillo_Chavez, Carlos (Committee member) / Jones, Donald (Committee member) / Mahalov, Alex (Committee member) / Suslov, Sergei (Committee member) / Arizona State University (Publisher)
Created2011
151515-Thumbnail Image.png
Description
This thesis outlines the development of a vector retrieval technique, based on data assimilation, for a coherent Doppler LIDAR (Light Detection and Ranging). A detailed analysis of the Optimal Interpolation (OI) technique for vector retrieval is presented. Through several modifications to the OI technique, it is shown that the modified

This thesis outlines the development of a vector retrieval technique, based on data assimilation, for a coherent Doppler LIDAR (Light Detection and Ranging). A detailed analysis of the Optimal Interpolation (OI) technique for vector retrieval is presented. Through several modifications to the OI technique, it is shown that the modified technique results in significant improvement in velocity retrieval accuracy. These modifications include changes to innovation covariance portioning, covariance binning, and analysis increment calculation. It is observed that the modified technique is able to make retrievals with better accuracy, preserves local information better, and compares well with tower measurements. In order to study the error of representativeness and vector retrieval error, a lidar simulator was constructed. Using the lidar simulator a thorough sensitivity analysis of the lidar measurement process and vector retrieval is carried out. The error of representativeness as a function of scales of motion and sensitivity of vector retrieval to look angle is quantified. Using the modified OI technique, study of nocturnal flow in Owens' Valley, CA was carried out to identify and understand uncharacteristic events on the night of March 27th 2006. Observations from 1030 UTC to 1230 UTC (0230 hr local time to 0430 hr local time) on March 27 2006 are presented. Lidar observations show complex and uncharacteristic flows such as sudden bursts of westerly cross-valley wind mixing with the dominant up-valley wind. Model results from Coupled Ocean/Atmosphere Mesoscale Prediction System (COAMPS®) and other in-situ instrumentations are used to corroborate and complement these observations. The modified OI technique is used to identify uncharacteristic and extreme flow events at a wind development site. Estimates of turbulence and shear from this technique are compared to tower measurements. A formulation for equivalent wind speed in the presence of variations in wind speed and direction, combined with shear is developed and used to determine wind energy content in presence of turbulence.
ContributorsChoukulkar, Aditya (Author) / Calhoun, Ronald (Thesis advisor) / Mahalov, Alex (Committee member) / Kostelich, Eric (Committee member) / Huang, Huei-Ping (Committee member) / Phelan, Patrick (Committee member) / Arizona State University (Publisher)
Created2013
152416-Thumbnail Image.png
Description
Droughts are a common phenomenon of the arid South-west USA climate. Despite water limitations, the region has been substantially transformed by agriculture and urbanization. The water requirements to support these human activities along with the projected increase in droughts intensity and frequency challenge long term sustainability and water security, thus

Droughts are a common phenomenon of the arid South-west USA climate. Despite water limitations, the region has been substantially transformed by agriculture and urbanization. The water requirements to support these human activities along with the projected increase in droughts intensity and frequency challenge long term sustainability and water security, thus the need to spatially and temporally characterize land use/land cover response to drought and quantify water consumption is crucial. This dissertation evaluates changes in `undisturbed' desert vegetation in response to water availability to characterize climate-driven variability. A new model coupling phenology and spectral unmixing was applied to Landsat time series (1987-2010) in order to derive fractional cover (FC) maps of annuals, perennials, and evergreen vegetation. Results show that annuals FC is controlled by short term water availability and antecedent soil moisture. Perennials FC follow wet-dry multi-year regime shifts, while evergreen is completely decoupled from short term changes in water availability. Trend analysis suggests that different processes operate at the local scale. Regionally, evergreen cover increased while perennials and annuals cover decreased. Subsequently, urban land cover was compared with its surrounding desert. A distinct signal of rain use efficiency and aridity index was documented from remote sensing and a soil-water-balance model. It was estimated that a total of 295 mm of water input is needed to sustain current greenness. Finally, an energy balance model was developed to spatio-temporally estimate evapotranspiration (ET) as a proxy for water consumption, and evaluate land use/land cover types in response to drought. Agricultural fields show an average ET of 9.3 mm/day with no significant difference between drought and wet conditions, implying similar level of water usage regardless of climatic conditions. Xeric neighborhoods show significant variability between dry and wet conditions, while mesic neighborhoods retain high ET of 400-500 mm during drought due to irrigation. Considering the potentially limited water availability, land use/land cover changes due to population increases, and the threat of a warming and drying climate, maintaining large water-consuming, irrigated landscapes challenges sustainable practices of water conservation and the need to provide amenities of this desert area for enhancing quality of life.
ContributorsKaplan, Shai (Author) / Myint, Soe Win (Thesis advisor) / Brazel, Anthony J. (Committee member) / Georgescu, Matei (Committee member) / Arizona State University (Publisher)
Created2014
Description
It is possible in a properly controlled environment, such as industrial metrology, to make significant headway into the non-industrial constraints on image-based position measurement using the techniques of image registration and achieve repeatable feature measurements on the order of 0.3% of a pixel, or about an order of magnitude improvement

It is possible in a properly controlled environment, such as industrial metrology, to make significant headway into the non-industrial constraints on image-based position measurement using the techniques of image registration and achieve repeatable feature measurements on the order of 0.3% of a pixel, or about an order of magnitude improvement on conventional real-world performance. These measurements are then used as inputs for a model optimal, model agnostic, smoothing for calibration of a laser scribe and online tracking of velocimeter using video input. Using appropriate smooth interpolation to increase effective sample density can reduce uncertainty and improve estimates. Use of the proper negative offset of the template function has the result of creating a convolution with higher local curvature than either template of target function which allows improved center-finding. Using the Akaike Information Criterion with a smoothing spline function it is possible to perform a model-optimal smooth on scalar measurements without knowing the underlying model and to determine the function describing the uncertainty in that optimal smooth. An example of empiric derivation of the parameters for a rudimentary Kalman Filter from this is then provided, and tested. Using the techniques of Exploratory Data Analysis and the "Formulize" genetic algorithm tool to convert the spline models into more accessible analytic forms resulted in stable, properly generalized, KF with performance and simplicity that exceeds "textbook" implementations thereof. Validation of the measurement includes that, in analytic case, it led to arbitrary precision in measurement of feature; in reasonable test case using the methods proposed, a reasonable and consistent maximum error of around 0.3% the length of a pixel was achieved and in practice using pixels that were 700nm in size feature position was located to within ± 2 nm. Robust applicability is demonstrated by the measurement of indicator position for a King model 2-32-G-042 rotameter.
ContributorsMunroe, Michael R (Author) / Phelan, Patrick (Thesis advisor) / Kostelich, Eric (Committee member) / Mahalov, Alex (Committee member) / Arizona State University (Publisher)
Created2012
Description
I travelled and worked in international fisheries policy for 7 months in preparation for this thesis. During this time I completed one internship in Rome, Italy with the Food and Agriculture Organization of the United Nations (UNFAO) and another internship on the island of Pohnpei with the Secretariat of the

I travelled and worked in international fisheries policy for 7 months in preparation for this thesis. During this time I completed one internship in Rome, Italy with the Food and Agriculture Organization of the United Nations (UNFAO) and another internship on the island of Pohnpei with the Secretariat of the Western and Central Pacific Fisheries Commission (WCPFC). From these experiences, I selected the subject of this thesis. My thesis analyzes the management system for South Pacific albacore tuna, the source stock for brands like "Chicken of the Sea" and "Starkist". South Pacific albacore tuna pass through international waters and the waters of several Pacific Island countries and territories, necessitating States to cooperate and coordinate to sustain the future viability of the stock. A case study for transboundary natural resource management, I discuss the institutional complexity that arises from managing such a resource. I use common-pool resource (CPR) theory to describe this complexity, which frames natural resource management as a collective-action problem among resource users. I first conceptualize the management system as having multiple institutional scales and multiple levels of organization. Then, employing Ostrom's 8 design principles for successful CPR management, I conduct a multi-institution analysis of the international, regional, and subregional institutions that participate in the management system. Finally, I also conduct a cross-institution analysis by examining the interactions between these institutions. I find that significant space for theoretical development exists in CPR theory for understanding complex management systems for transboundary natural resources. Furthermore, I find that interactions between institutions create linkages that could be retooled to improve the performance of the South Pacific albacore tuna management system.
ContributorsAbolhassani, Angela Maryam (Author) / Abbott, Kenneth (Thesis director) / Schoon, Michael (Committee member) / Barrett, The Honors College (Contributor) / School of Politics and Global Studies (Contributor) / School of Life Sciences (Contributor) / Department of English (Contributor)
Created2015-05
136273-Thumbnail Image.png
Description
This paper explores two areas of study: Colony Collapse Disorder and urban apiculture--the practice of keeping bees in urban areas. Additionally, this paper discusses the ways in which Colony Collapse Disorder has encouraged an increase in urban beekeeping, and the possible role of urban apiculture as a means of combatting

This paper explores two areas of study: Colony Collapse Disorder and urban apiculture--the practice of keeping bees in urban areas. Additionally, this paper discusses the ways in which Colony Collapse Disorder has encouraged an increase in urban beekeeping, and the possible role of urban apiculture as a means of combatting the negative effects of Colony Collapse Disorder. The symptoms, history, and possible causes of Colony Collapse Disorder are presented, as well as the important role that honey bees play in human agriculture. Following the discussion of Colony Collapse Disorder is a description of my urban beekeeping apprenticeship at Desert Marigold School where I kept bees, researched various hives, attended a beekeeping workshop in Tucson, and eventually built a hive and established a colony with my mentor. This paper includes a guide to beekeeping basics, as well as a guide to starting a hive based upon the lessons learned during my apprenticeship.
ContributorsRomero, Madelyn Rattan (Author) / Schoon, Michael (Thesis director) / Silcox, Holly (Committee member) / Barrett, The Honors College (Contributor) / School of Sustainability (Contributor) / School of Geographical Sciences and Urban Planning (Contributor)
Created2015-05
136332-Thumbnail Image.png
Description
South Mountain is the largest municipal park in the nation. It is a bundled amenity, providing a series of linked services to the surrounding communities. A dataset of 19,209 homes in 155 neighborhoods within three miles of the park was utilized in order to complete a hedonic estimation for two

South Mountain is the largest municipal park in the nation. It is a bundled amenity, providing a series of linked services to the surrounding communities. A dataset of 19,209 homes in 155 neighborhoods within three miles of the park was utilized in order to complete a hedonic estimation for two nearby urban villages, Ahwatukee Foothills and South Mountain Village. Measures of access include proximity to the park, trailhead access, and adjacency to the park. Two regressions were estimated, the first including lot characteristics and subdivision fixed effects and the second using the coefficients for each subdivision as the dependent variable. These estimates describe how the location of a house in a subdivision contributes to its conditional mean price. As a result they offer a direct basis for capturing amenities measured at the neighborhood scale on home values. Park proximity, trailhead access and adjacency were found to significantly influence the price of homes at the 5% confidence level in Ahwatukee, but not in South Mountain Village. The results of this study can be applied to issues of environmental justice and park access in determining which areas and attributes of the park are associated with a high premium. Though South Mountain was preserved some time ago, development and future preservation in the City of Phoenix can be informed by such studies.
ContributorsRamakrishna, Saritha Kambhampati (Author) / Abbott, Joshua (Thesis director) / Smith, V. Kerry (Committee member) / Schoon, Michael (Committee member) / Barrett, The Honors College (Contributor) / School of Sustainability (Contributor) / Economics Program in CLAS (Contributor) / Department of English (Contributor)
Created2015-05
135548-Thumbnail Image.png
Description
This paper explores the contested relationships between nature, culture, and gender. In order to analyze these relationships, we look specifically at outdoor recreation. Furthermore, we employ poststructuralist feminist theory in order to produce three frameworks; the first of which is titled Mother Nature’s Promiscuous Past. Rooted in Old World and

This paper explores the contested relationships between nature, culture, and gender. In order to analyze these relationships, we look specifically at outdoor recreation. Furthermore, we employ poststructuralist feminist theory in order to produce three frameworks; the first of which is titled Mother Nature’s Promiscuous Past. Rooted in Old World and colonial values, this framework illustrates the flawed feminization of nature by masculinity, and its subsequent extortion of anything related to femininity — including women and nature itself. This belief barred women from nature, resulting in a lack of access for women to outdoor recreation.
Our second framework, titled The Pleasurable Potential of Outdoor Recreation, cites second-wave feminism as a catalyst for women’s participation in wilderness exploration and outdoor recreation. The work of radical feminists and the women’s liberation movement in 1960s and 1970s empowered women at home, in the workplace, and eventually, in the outdoors; women reclaimed their wilderness, yet they continued to employ Framework One’s feminization of nature. Ecofeminsim brought together nature and women, seeking to bring justice to two groups wronged by the same entity: masculinity. In this context, outdoor recreation is empowering for women.
Despite the potential of Framework Two to reinscribe and better the experiences of women in outdoor recreation, we argue that both Frameworks One and Two perpetuate the gender binary and the nature/culture binary, because they are based upon the notion that women are in fact fundamentally different and separate from men, the notion that nature is an entity separate from culture, or human society, as well as the notion that nature is in fact a feminine entity.
Our third framework, Deer Pay No Mind to Your Genitals, engages poststructuralism, asserting that outdoor recreation and activities that occur in nature can serve to destabilize and deconstruct notions of the gender binary. However, we argue that care must be exercised during this process as not to perpetuate the problematic nature/culture binary, a phenomenon that is unproductive in terms of both sustainability and gender liberation. Outdoor recreation has been used by many as a tool to deconstruct numerous societal constraints, including the gender binary; this, however, continues to attribute escapist and isolationist qualities toward nature, and therefore perpetuating the nature/culture divide. Ultimately, we argue outdoor recreation can and should be used as a tool deconstruct the gender binary, however needs to account for the fact that if nature is helping to construct elements of culture, then the two cannot be separate.
ContributorsPolick-Kirkpatrick, Kaelyn (Co-author) / Downing, Haley Marie (Co-author) / Dove-Viebahn, Aviva (Thesis director) / Schoon, Michael (Committee member) / School of Sustainability (Contributor) / School of Social Transformation (Contributor) / Economics Program in CLAS (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
137003-Thumbnail Image.png
DescriptionA small-scale aquaponic system was created to demonstrate the sustainable properties of the system as well as the effectiveness of raising fish and plants symbiotically.
ContributorsSerna, Desiree Marie (Author) / Schoon, Michael (Thesis director) / Peterson, Greg (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor)
Created2014-05
137189-Thumbnail Image.png
Description
Urban areas produce an urban heat island (UHI), which is manifest as warmer temperatures compared to the surrounding and less developed areas. While it is understood that UHI's are warmer than their surrounding areas, attributing the amount of heat added by the urban area is not easily determined. Current generation

Urban areas produce an urban heat island (UHI), which is manifest as warmer temperatures compared to the surrounding and less developed areas. While it is understood that UHI's are warmer than their surrounding areas, attributing the amount of heat added by the urban area is not easily determined. Current generation modeling systems require diurnal anthropogenic heating profiles. Development of diurnal cycle profiles of anthropogenic heating will help the modeling community as there is currently no database for anthropogenic heating profiles for cities across the United States. With more accurate anthropogenic heating profiles, climate models will be better able to show how humans directly impact the urban climate. This research attempts to create anthropogenic heating profiles for 61 cities in the United States. The method used climate, electricity, natural gas, and transportation data to develop anthropogenic heating profiles for each state. To develop anthropogenic heating profiles, profiles are developed for buildings, transportation, and human metabolism using the most recently available data. Since utilities are reluctant to release data, the building energy profile is developed using statewide electricity by creating a linear regression between the climate and electricity usage. A similar method is used to determine the contribution of natural gas consumption. These profiles are developed for each month of the year, so annual changes in anthropogenic heating can be seen. These profiles can then be put into climate models to enable more accurate urban climate modeling.
ContributorsMilne, Jeffrey (Author) / Georgescu, Matei (Thesis director) / Sailor, David (Committee member) / Brazel, Anthony (Committee member) / Barrett, The Honors College (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / School of Geographical Sciences and Urban Planning (Contributor)
Created2014-05