Matching Items (379)
150569-Thumbnail Image.png
Description
Deoxyribonucleic acid (DNA) has been treated as excellent building material for nanoscale construction because of its unique structural features. Its ability to self-assemble into predictable and addressable nanostructures distinguishes it from other materials. A large variety of DNA nanostructures have been constructed, providing scaffolds with nanometer precision to organize functional

Deoxyribonucleic acid (DNA) has been treated as excellent building material for nanoscale construction because of its unique structural features. Its ability to self-assemble into predictable and addressable nanostructures distinguishes it from other materials. A large variety of DNA nanostructures have been constructed, providing scaffolds with nanometer precision to organize functional molecules. This dissertation focuses on developing biologically replicating DNA nanostructures to explore their biocompatibility for potential functions in cells, as well as studying the molecular behaviors of DNA origami tiles in higher-order self-assembly for constructing DNA nanostructures with large size and complexity. Presented here are a series of studies towards this goal. First, a single-stranded DNA tetrahedron was constructed and replicated in vivo with high efficiency and fidelity. This study indicated the compatibility between DNA nanostructures and biological systems, and suggested a feasible low-coast method to scale up the preparation of synthetic DNA. Next, the higher-order self-assembly of DNA origami tiles was systematically studied. It was demonstrated that the dimensional aspect ratio of origami tiles as well as the intertile connection design were essential in determining the assembled superstructures. Finally, the effects of DNA hairpin loops on the conformations of origami tiles as well as the higher-order assembled structures were demonstrated. The results would benefit the design and construction of large complex nanostructures.
ContributorsLi, Zhe (Author) / Yan, Hao (Thesis advisor) / Liu, Yan (Thesis advisor) / Seo, Dong-Kyun (Committee member) / Wachter, Rebekka (Committee member) / Arizona State University (Publisher)
Created2012
150495-Thumbnail Image.png
Description
The evaluation of nutritional status by dietary intake assessment is fundamental to nutrition research. Accurate assessment allows for health professional-moderated diet adjustment in order to promote disease prevention and management. However, dietary intake can be extremely challenging to measure properly as reliability and accuracy are essential. As technology use has

The evaluation of nutritional status by dietary intake assessment is fundamental to nutrition research. Accurate assessment allows for health professional-moderated diet adjustment in order to promote disease prevention and management. However, dietary intake can be extremely challenging to measure properly as reliability and accuracy are essential. As technology use has become more prevalent in recent years, an assortment of online, web-based diet analysis methods have begun to emerge. Are these modern methods as accurate as the traditional methods? The aim of this study was to compare and contrast diet analyses from a feeding trial in which both subject-coded (using the Automated Self Administered 24 hour recall, or the ASA24) and investigator-coded (using the Food Processor diet analysis program) diet records were available. Sixty-four overweight (body mass index >27-40 kg/m2) members of a campus community between the ages of 20-45 were recruited for an 8-week parallel arm, randomized controlled trial to evaluate the impact of two different pre-dinner meal snacks on satiety, calories consumed, and contribution to modest weight loss. As part of the study requirements, participants completed 3-day food logs at four different times during the trial: pre-trial, and week 1, 4, and 8. Participants also entered their dietary information into the ASA24 website the day after the intake was recorded by hand. Nutrient intake values were compared between the ASA24 records and the handwritten food logs. All statistical analyses were performed using SPSS Statistical Analysis version 19.0; bivariate analyses and Spearman correlation analyses were utilized. Energy, macronutrient, and micronutrient intakes did correlate significantly between the two methodologies, though both under-reporting and over-reporting were found to exist. Carbohydrate and fiber intakes were under-reported by subjects; retinol, beta-carotene, and vitamin C amounts were over-reported. These results are consistent with previous findings in reporting differences and suggest that the ASA24 is a comparably accurate dietary tracking tool to the traditional diet record method.
ContributorsSchohl, Brooke (Author) / Johnston, Carol (Thesis advisor) / Mayol-Kreiser, Sandra (Committee member) / Wharton, Christopher (Christopher Mack), 1977- (Committee member) / Arizona State University (Publisher)
Created2012
151248-Thumbnail Image.png
Description
Background: Research in animal models suggests that fish oil ingestion may impair immunity and increase risk for infection. To date there are no studies examining this relationship between fish oil ingestion and risk for infection in humans. Objective: The primary aim of this randomized, placebo-controlled, double-blind, parallel-arm study was to

Background: Research in animal models suggests that fish oil ingestion may impair immunity and increase risk for infection. To date there are no studies examining this relationship between fish oil ingestion and risk for infection in humans. Objective: The primary aim of this randomized, placebo-controlled, double-blind, parallel-arm study was to examine the effect of 400 mg of EPA and 200 mg of DHA, the main components of fish oil (FO) supplements, on the incidence of symptoms related to upper respiratory tract infections in healthy young females, at a large southwestern university. Design: Healthy young women between 18 and 38 years of age who were non-obese (mean BMI 23.7 ± 0.6 kg/m2) were recruited from an urban southwestern university campus. Subjects were non-vegetarians, non-smokers, and reported consuming less than one serving (3.5 oz) of fish per week. Participants (n=26) were randomized according to age, body weight, BMI, and daily n-3 fatty acid (FA) intake into two groups: FO (one gel capsule of 600 mg EPA/DHA per day) or CO (one placebo gel capsule of 1000 mg coconut oil per day). Participants completed a validated daily cold symptom survey, the Wisconsin Upper Respiratory Symptom Survey-21 for 8 weeks. Fasting blood samples measuring TNF-α concentrations were taken at weeks 1 and 8, when 24-hour dietary recalls were also performed. Anthropometric measurements were recorded via bioelectrical impedance at trial weeks 1, 4, and 8. Results: The 8-week trial of FO supplementation did not significantly change the average score for perception of cold symptoms between FO and CO groups (167 ± 71 and 185 ± 56, p=0.418, respectively). Plasma TNF-α levels (pg/mL) did not differ between groups (p=0.482). TNF-α levels were significantly correlated with body weight (r=0.480, p=0.037), BMI (r=0.481, p=0.037, and percent body fat (r=0.511, p=0.025) at baseline. Conclusions: Healthy young women taking a fish oil supplement of 400 mg EPA and 200 mg DHA per day over 8 weeks does not impose unintentional health consequences. These findings do not refute the American Heart Association's current recommendations for all Americans to consume two servings (3.5 oz) of a variety of oily fish per week. Depending on the type of fish, this current recommendation equates to approximately 200-300 mg per day of EPA and DHA n-3 polyunsaturated fatty acids. Additional research is needed to investigate the effects of higher dosages of fish oils on daily cold symptoms.
ContributorsGutierrez, Megan (Author) / Johnston, Carol (Thesis advisor) / Appel, Christy (Committee member) / Martin, Keith (Committee member) / Arizona State University (Publisher)
Created2013
151216-Thumbnail Image.png
Description
The unpleasant bitter taste found in many nutritious vegetables may deter people from consuming a healthy diet. We investigated individual differences in taste perception and whether these differences influence the effectiveness of bitterness masking. To test whether phenylthiocarbamide (PTC) `supertasters' also taste salt and sugar with greater intensity, as suggested

The unpleasant bitter taste found in many nutritious vegetables may deter people from consuming a healthy diet. We investigated individual differences in taste perception and whether these differences influence the effectiveness of bitterness masking. To test whether phenylthiocarbamide (PTC) `supertasters' also taste salt and sugar with greater intensity, as suggested by Bartoshuk and colleagues (2004), we infused strips of paper with salt water or sugar water. The bitterness rating of the PTC strip had a significant positive linear relationship with ratings of both the intensity of sweet and salt, but the effect sizes were very low, suggesting that the PTC strip does not give a complete picture of tasting ability. Next we investigated whether various seasonings could mask the bitter taste of vegetables and whether this varied with tasting ability. We found that sugar decreased bitterness and lemon decreased liking for vegetables of varying degrees of bitterness. The results did not differ by ability to taste any of the flavors. Therefore, even though there are remarkable individual differences in taste perception, sugar can be used to improve the initial palatability of vegetables and increase their acceptance and consumption.
ContributorsWilkie, Lynn Melissa (Author) / Phillips, Elizabeth D. (Thesis advisor) / Cohen, Adam (Committee member) / Johnston, Carol (Committee member) / Arizona State University (Publisher)
Created2012
151225-Thumbnail Image.png
Description
Many people with or at risk for diabetes have difficulty maintaining normal postprandial blood glucose levels (120-140 mg/dl). Research has shown that vinegar decreases postprandial glycemia. The purpose of this study was to examine a possible mechanism by which vinegar decreases postprandial glycemia, particularly the effect of vinegar ingestion on

Many people with or at risk for diabetes have difficulty maintaining normal postprandial blood glucose levels (120-140 mg/dl). Research has shown that vinegar decreases postprandial glycemia. The purpose of this study was to examine a possible mechanism by which vinegar decreases postprandial glycemia, particularly the effect of vinegar ingestion on gut fermentation. In this parallel arm randomized control trial, the effects of daily ingestion of vinegar on gut fermentation markers were observed among adults at risk for type 2 diabetes in Phoenix, Arizona. Subjects (n=14) were randomly assigned to treatments consisting of a vinegar drink (1.5g acetic acid) or a placebo (2 vinegar pills containing 40mg acetic acid each). All participants were required to consume the vinegar drink (16 oz) or 2 placebo pills every day for 12 weeks. At week 12, participants filled out a questionnaire to report gastrointestinal (GI) symptoms and three consecutive breath samples were taken from each subject to measure fasting breath hydrogen (BH2) with a breath analyzer. Fasting BH2 measures for the vinegar drink group (16.1+11.8 ppm) were significantly different than those from the pill group (3.6+1.4) with a partial eta squared of 0.39 (p=0.023). After adjusting for age as a confounding factor (r=0.406) and removing an outlier, fasting BH2 measures for the vinegar drink group (4.3+1.1 ppm) were still significantly different than those from the pill group (3.6+1.4) with a partial eta squared of 0.35 (p=0.045). Participants in both groups reported mild changes in GI symptoms. In conclusion, adults at risk for type 2 diabetes that consume 2 tablespoons of vinegar a day may have increased gut fermentation compared to those who do not consume vinegar.
ContributorsWhite, Serena (Author) / Johnston, Carol (Thesis advisor) / Appel, Christy (Committee member) / Martin, Keith (Committee member) / Arizona State University (Publisher)
Created2013
151273-Thumbnail Image.png
Description
ABSTRACT This randomized, controlled, double-blind crossover study examined the effects of a preprandial, 20g oral dose of apple cider vinegar (ACV) on colonic fermentation and glycemia in a normal population, with the ultimate intention of identifying the mechanisms by which vinegar has been shown to reduce postprandial glycemia and insulinemia.

ABSTRACT This randomized, controlled, double-blind crossover study examined the effects of a preprandial, 20g oral dose of apple cider vinegar (ACV) on colonic fermentation and glycemia in a normal population, with the ultimate intention of identifying the mechanisms by which vinegar has been shown to reduce postprandial glycemia and insulinemia. Fifteen male and female subjects were recruited, ages 20-60y, who had no prior history of gastrointestinal (GI) disease or resections impacting normal GI function, were non-smokers, were non-vegetarian/vegan, were not taking any medications known to alter (glucose) metabolism, and were free of chronic disease including diabetes. Subjects were instructed to avoid exercise, alcohol and smoking the day prior to their trials and to consume a standardized, high-carbohydrate dinner meal the eve prior. There was a one-week washout period per subject between appointments. Breath hydrogen, serum insulin and capillary glucose were assessed over 3 hours after a high-starch breakfast meal to evaluate the impact of preprandial supplementation with ACV or placebo (water). Findings confirmed the antiglycemic effects of ACV as documented in previous studies, with significantly lower mean blood glucose concentrations observed during ACV treatment compared to the placebo at 30 min (p=0.003) and 60 min (p=0.005), and significantly higher mean blood glucose concentrations at 180 min (p=0.045) postprandial. No significant differences in insulin concentrations between treatments. No significant differences were found between treatments (p>0.05) for breath hydrogen; however, a trend was observed between the treatments at 180 min postprandial where breath hydrogen concentration was visually perceived as being higher with ACV treatment compared to the placebo. Therefore, this study failed to support the hypothesis that preprandial ACV ingestion produces a higher rate of colonic fermentation within a 3 hour time period following a high-carbohydrate meal. Due to variations in experiment duration noted in other literature, an additional study of similar nature with an expanded specimen collections period, well beyond 3 hours, is warranted.
ContributorsMedved, Emily M (Author) / Johnston, Carol (Thesis advisor) / Sweazea, Karen (Committee member) / Shepard, Christina (Committee member) / Arizona State University (Publisher)
Created2012
151091-Thumbnail Image.png
Description
Nanoporous electrically conducting materials can be prepared with high specific pore volumes and surface areas which make them well-suited for a wide variety of technologies including separation, catalysis and owing to their conductivity, energy related applications like solar cells, batteries and capacitors. General synthetic methods for nanoporous conducting materials that

Nanoporous electrically conducting materials can be prepared with high specific pore volumes and surface areas which make them well-suited for a wide variety of technologies including separation, catalysis and owing to their conductivity, energy related applications like solar cells, batteries and capacitors. General synthetic methods for nanoporous conducting materials that exhibit fine property control as well as facility and efficiency in their implementation continue to be highly sought after. Here, general methods for the synthesis of nanoporous conducting materials and their characterization are presented. Antimony-doped tin oxide (ATO), a transparent conducting oxide (TCO), and nanoporous conducting carbon can be prepared through the step-wise synthesis of interpenetrating inorganic/organic networks using well-established sol-gel methodology. The one-pot method produces an inorganic gel first that encompasses a solution of organic precursors. The surface of the inorganic gel subsequently catalyzes the formation of an organic gel network that interpenetrates throughout the inorganic gel network. These mutually supporting gel networks strengthen one another and allow for the use of evaporative drying methods and heat treatments that would usually destroy the porosity of an unsupported gel network. The composite gel is then selectively treated to either remove the organic network to provide a porous inorganic network, as is the case for antimony-doped tin oxide, or the inorganic network can be removed to generate a porous carbon material. The method exhibits flexibility in that the pore structure of the final porous material can be modified through the variation of the synthetic conditions. Additionally, porous carbons of hierarchical pore size distributions can be prepared by using wet alumina gel as a template dispersion medium and as a template itself. Alumina gels exhibit thixotropy, which is the ability of a solid to be sheared to a liquid state and upon removal of the shear force, return to a solid gel state. Alumina gels were prepared and blended with monomer solutions and sacrificial template particles to produce wet gel composites. These composites could then be treated to remove the alumina and template particles to generate hierarchically porous carbon.
ContributorsVolosin, Alex (Author) / Seo, Dong-Kyun (Thesis advisor) / Buttry, Daniel (Committee member) / Gust, John D (Committee member) / Arizona State University (Publisher)
Created2012
148324-Thumbnail Image.png
Description

The various health benefits of vinegar ingestion have been studied extensively in the<br/>literature. Moreover, emerging research suggests vinegar may also have an effect on mental<br/>health. Beneficial effects of certain diets on mood have been reported, however, the mechanisms<br/>are unknown. The current study aimed to determine if vinegar ingestion positively affects

The various health benefits of vinegar ingestion have been studied extensively in the<br/>literature. Moreover, emerging research suggests vinegar may also have an effect on mental<br/>health. Beneficial effects of certain diets on mood have been reported, however, the mechanisms<br/>are unknown. The current study aimed to determine if vinegar ingestion positively affects mood<br/>state in healthy young adults. This was a randomized, single blinded controlled trial consisting of<br/>25 subjects. Participants were randomly assigned to either the vinegar group (consumed 2<br/>tablespoons of liquid vinegar diluted in one cup water twice daily with meals) or the control<br/>group (consumed one vinegar pill daily with a meal), and the intervention lasted 4 weeks.<br/>Subjects completed mood questionnaires pre- and post-intervention. Results showed a significant<br/>improvement in CES-D and POMS-Depression scores for the vinegar group compared to the<br/>control. This study suggests that vinegar ingestion may improve depressive symptoms in healthy<br/>young adults.

ContributorsWilliams, Susanna (Author) / Johnston, Carol (Thesis director) / Whisner, Corrie (Committee member) / College of Health Solutions (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
136115-Thumbnail Image.png
Description
Background: Both puberty and diets composed of high levels of saturated fats have been shown to result in central adiposity, fasting hyperinsulinemia, insulin resistance and impaired glucose tolerance. While a significantly insulinogenic phenotypic change occurs in these two incidences, glucose homeostasis does not appear to be affected. Methods: Male, Sprague-dawley

Background: Both puberty and diets composed of high levels of saturated fats have been shown to result in central adiposity, fasting hyperinsulinemia, insulin resistance and impaired glucose tolerance. While a significantly insulinogenic phenotypic change occurs in these two incidences, glucose homeostasis does not appear to be affected. Methods: Male, Sprague-dawley rats were fed diets consisting of CHOW or low fat (LF), High Fat Diet and High Fat Diet (HFD) with supplementary Canola Oil (Monounsaturated fat). These rats were given these diets at 4-5 weeks old and given intraperitoneal and oral glucose tolerance tests(IPGTT; OGTT) at 4 and 8 weeks to further understand glucose and insulin behavior under different treatments. (IPGTT: LF-n=14, HFD-n=16, HFD+CAN-n=12; OGTT: LF-n=8, HFD-n=8, HFD+CAN-n=6). Results: When comparing LF fed rats at 8 weeks with 4 week glucose challenge test, area under the curve (AUC) of glucose was 1.2 that of 4 weeks. At 8 weeks, HFD fed rats AUCg was much greater than LF fed rats under both IPGTT and OGTT. When supplemented with Canola oil, HFD fed rats AUC returned to LF data range. Despite the alleviating glucose homeostasis affects of Canola oil the AUC of insulin curve, which was elevated by HFD, remained high. Conclusion: HFD in maturing rats elevates fasting insulin levels, increases insulin resistance and lowers glucose homeostasis. When given a monounsaturated fatty acid (MUFA) supplement fasting hyperinsulinemia, and late hyperinsulinemia still occur though glucose homeostasis is regained. For OGTT HFD also induced late hyper c-peptide levels and compared to LF and HFD+CAN, a higher c-peptide level over time.
ContributorsRay, Tyler John (Author) / Caplan, Michael (Thesis director) / Herman, Richard (Committee member) / Towner, Kali (Committee member) / Barrett, The Honors College (Contributor) / Department of Chemistry and Biochemistry (Contributor) / W. P. Carey School of Business (Contributor) / School of Human Evolution and Social Change (Contributor)
Created2015-05
136118-Thumbnail Image.png
Description
Nucleic acids encode the information required to create life, and polymerases are the gatekeepers charged with maintaining the storage and flow of this genetic information. Synthetic biologists utilize this universal property to modify organisms and other systems to create unique traits or improve the function of others. One of the

Nucleic acids encode the information required to create life, and polymerases are the gatekeepers charged with maintaining the storage and flow of this genetic information. Synthetic biologists utilize this universal property to modify organisms and other systems to create unique traits or improve the function of others. One of the many realms in synthetic biology involves the study of biopolymers that do not exist naturally, which is known as xenobiology. Although life depends on two biopolymers for genetic storage, it may be possible that alternative molecules (xenonucleic acids – XNAs), could be used in their place in either a living or non-living system. However, implementation of an XNA based system requires the development of polymerases that can encode and decode information stored in these artificial polymers. A strategy called directed evolution is used to modify or alter the function of a protein of interest, but identifying mutations that can modify polymerase function is made problematic by their size and overall complexity. To reduce the amount of sequence space that needs to be samples when attempting to identify polymerase variants, we can try to make informed decisions about which amino acid residues may have functional roles in catalysis. An analysis of Family B polymerases has shown that residues which are involved in substrate specificity are often highly conserved both at the sequence and structure level. In order to validate the hypothesis that a strong correlation exists between structural conservation and catalytic activity, we have selected and mutated residues in the 9°N polymerase using a loss of function mutagenesis strategy based on a computational analysis of several homologues from a diverse range of taxa. Improvement of these models will hopefully lead to quicker identification of loci which are ideal engineering targets.
ContributorsHaeberle, Tyler Matthew (Author) / Chaput, John (Thesis director) / Chen, Julian (Committee member) / Larsen, Andrew (Committee member) / Barrett, The Honors College (Contributor) / Department of Chemistry and Biochemistry (Contributor) / School of Life Sciences (Contributor)
Created2015-05