Matching Items (255)
135418-Thumbnail Image.png
Description
Solid oxide fuel cells have become a promising candidate in the development of high-density clean energy sources for the rapidly increasing demands in energy and global sustainability. In order to understand more about solid oxide fuel cells, the important step is to understand how to model heterogeneous materials. Heterogeneous materials

Solid oxide fuel cells have become a promising candidate in the development of high-density clean energy sources for the rapidly increasing demands in energy and global sustainability. In order to understand more about solid oxide fuel cells, the important step is to understand how to model heterogeneous materials. Heterogeneous materials are abundant in nature and also created in various processes. The diverse properties exhibited by these materials result from their complex microstructures, which also make it hard to model the material. Microstructure modeling and reconstruction on a meso-scale level is needed in order to produce heterogeneous models without having to shave and image every slice of the physical material, which is a destructive and irreversible process. Yeong and Torquato [1] introduced a stochastic optimization technique that enables the generation of a model of the material with the use of correlation functions. Spatial correlation functions of each of the various phases within the heterogeneous structure are collected from a two-dimensional micrograph representing a slice of a solid oxide fuel cell through computational means. The assumption is that two-dimensional images contain key structural information representative of the associated full three-dimensional microstructure. The collected spatial correlation functions, a combination of one-point and two-point correlation functions are then outputted and are representative of the material. In the reconstruction process, the characteristic two-point correlation functions is then inputted through a series of computational modeling codes and software to generate a three-dimensional visual model that is statistically similar to that of the original two-dimensional micrograph. Furthermore, parameters of temperature cooling stages and number of pixel exchanges per temperature stage are utilized and altered accordingly to observe which parameters has a higher impact on the reconstruction results. Stochastic optimization techniques to produce three-dimensional visual models from two-dimensional micrographs are therefore a statistically reliable method to understanding heterogeneous materials.
ContributorsPhan, Richard Dylan (Author) / Jiao, Yang (Thesis director) / Ren, Yi (Committee member) / Chemical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
135299-Thumbnail Image.png
Description
Essential to the field of petroleum engineering, well testing is done to determine the important physical characteristics of a reservoir. In the case of a constant production rate (as opposed to a constant pressure), the well pressure drop is a function of both time and the formation's boundary conditions. This

Essential to the field of petroleum engineering, well testing is done to determine the important physical characteristics of a reservoir. In the case of a constant production rate (as opposed to a constant pressure), the well pressure drop is a function of both time and the formation's boundary conditions. This pressure drop goes through several distinct stages before reaching steady state or semi-steady state production. This paper focuses on the analysis of a circular well with a closed outer boundary and details the derivation of a new approximation, intended for the transient stage, from an existing steady state solution. This new approximation is then compared to the numerical solution as well as an existing approximate solution. The new approximation is accurate with a maximum 10% margin of error well into the semi-steady state phase with that error decreasing significantly as the distance to the closed external boundary increases. More accurate over a longer period of time than the existing line source approximation, the relevance and applications of this new approximate solution deserve further exploration.
ContributorsKelso, Sean Andrew (Author) / Chen, Kangping (Thesis director) / Liao, Yabin (Committee member) / Mechanical and Aerospace Engineering Program (Contributor) / School of Music (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
135266-Thumbnail Image.png
Description
Pseudo-steady state (PSS) flow is a dominant time-dependent flow regime during constant rate production from a closed reservoir. Recently Chen (2016) has obtained an exact analytical solution for the PSS flow of a fully-penetrated fractured vertical well with finite conductivity in an elliptical drainage area. The availability of this analytical

Pseudo-steady state (PSS) flow is a dominant time-dependent flow regime during constant rate production from a closed reservoir. Recently Chen (2016) has obtained an exact analytical solution for the PSS flow of a fully-penetrated fractured vertical well with finite conductivity in an elliptical drainage area. The availability of this analytical solution shortens the computational time required for such a solution by several orders of magnitude. This paper correlates the PSS flow of a fully-penetrated fractured vertical well in square drainage areas to Chen’s solution for an elliptical drainage area using shape factors. Specifically such a shape factor is established by equating the dimensionless productivity index of the PSS flow in a square domain to that in an elliptical domain of identical area. The shape factor was dependent on the proppant number and fracture penetration ratio. Productivity index data for fractured wells with finite conductivity in square drainage area and no skin from Romero et al. (2003) was compared to Chen’s solution assuming equivalent drainage areas and identical proppant numbers, with the penetration ratio as a parameter. A non-linear multi-variable regression analysis results in a unified shape factor function with a correlation coefficient of 0.80 and a minimized sum of squared error of 36.1. The achieved shape factor allows the analytical solution for PSS flow of fractured well in an elliptical drainage area to be applied to square drainage areas. This generalization of the PSS flow solution is of practical significance in fracture design optimization and production rate decline analysis. Future recommendations including testing the accuracy of the shape factor in predictions of proppant numbers not used in analysis using COMSOL™, and increasing the dataset pool to increase the model accuracy.
ContributorsSharma, Ankush (Author) / Chen, Kangping (Thesis director) / Liao, Yabin (Committee member) / Chemical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
133963-Thumbnail Image.png
Description
Active flow control for airfoil designs has been researched for the past few decades. This has been achieved through steady blowing, pulsed blowing, synthetic jets, and plasma jets. These techniques have been applied to both single and dual jet configurations. This technology was examined for a wind turbine blade application

Active flow control for airfoil designs has been researched for the past few decades. This has been achieved through steady blowing, pulsed blowing, synthetic jets, and plasma jets. These techniques have been applied to both single and dual jet configurations. This technology was examined for a wind turbine blade application so that lift and drag can be altered without needing a mechanical flap. Research was completed to also allow for thicker airfoils with more blunt trailing edges that result in the higher structural strength needed for large, heavy wind turbine blades without the negative aerodynamic effects such as boundary layer separation. This research tested steady blowing in a dual jet configuration for the S830 airfoil from the National Renewable Energy Laboratory (NREL) database of airfoils. Computational Fluid Dynamics was used in the software Ansys Fluent. Calculations were completed for a modified S830 airfoil with a rounded trailing edge surface at momentum coefficients of 0.01 for the lower jet and 0.1, 0.12, and 0.14 for the upper jet. These results were then compared to the original S830 results for the lift over drag efficiency. The design with momentum coefficients of 0.12 for the upper surface resulted in the highest increase in efficiency of 53% at an angle of attack of 12 degrees. At this momentum coefficient, the angle of attack where zero lift occurred was at -8.62 degrees, compared to the case with no blowing at -1.90 degrees. From previous research and research completed in this thesis it was concluded that active flow control is an effective technique to improve wind turbine energy collection.
ContributorsStapleton, Paige (Author) / Mertz, Benjamin (Thesis director) / Herrmann, Marcus (Committee member) / Mechanical and Aerospace Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
133654-Thumbnail Image.png
Description
Widespread knowledge of fracture mechanics is mostly based on previous models that generalize crack growth in materials over several loading cycles. The objective of this project is to characterize crack growth that occurs in titanium alloys, specifically Grade 5 Ti-6Al-4V, at the sub-cycle scale, or within a single loading cycle.

Widespread knowledge of fracture mechanics is mostly based on previous models that generalize crack growth in materials over several loading cycles. The objective of this project is to characterize crack growth that occurs in titanium alloys, specifically Grade 5 Ti-6Al-4V, at the sub-cycle scale, or within a single loading cycle. Using scanning electron microscopy (SEM), imaging analysis is performed to observe crack behavior at ten loading steps throughout the loading and unloading paths. Analysis involves measuring the incremental crack growth and crack tip opening displacement (CTOD) of specimens at loading ratios of 0.1, 0.3, and 0.5. This report defines the relationship between crack growth and the stress intensity factor, K, of the specimens, as well as the relationship between the R-ratio and stress opening level. The crack closure phenomena and effect of microcracks are discussed as they influence the crack growth behavior. This method has previously been used to characterize crack growth in Al 7075-T6. The results for Ti-6Al-4V are compared to these previous findings in order to strengthen conclusions about crack growth behavior.
ContributorsNazareno, Alyssa Noelle (Author) / Liu, Yongming (Thesis director) / Jiao, Yang (Committee member) / Mechanical and Aerospace Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
171769-Thumbnail Image.png
Description
Electromigration, the net atomic diffusion associated with the momentum transfer from electrons moving through a material, is a major cause of device and component failure in microelectronics. The deleterious effects from electromigration rise with increased current density, a parameter that will only continue to increase as our electronic devices get

Electromigration, the net atomic diffusion associated with the momentum transfer from electrons moving through a material, is a major cause of device and component failure in microelectronics. The deleterious effects from electromigration rise with increased current density, a parameter that will only continue to increase as our electronic devices get smaller and more compact. Understanding the dynamic diffusional pathways and mechanisms of these electromigration-induced and propagated defects can further our attempts at mitigating these failure modes. This dissertation provides insight into the relationships between these defects and parameters of electric field strength, grain boundary misorientation, grain size, void size, eigenstrain, varied atomic mobilities, and microstructure.First, an existing phase-field model was modified to investigate the various defect modes associated with electromigration in an equiaxed non-columnar microstructure. Of specific interest was the effect of grain boundary misalignment with respect to current flow and the mechanisms responsible for the changes in defect kinetics. Grain size, magnitude of externally applied electric field, and the utilization of locally distinct atomic mobilities were other parameters investigated. Networks of randomly distributed grains, a common microstructure of interconnects, were simulated in both 2- and 3-dimensions displaying the effects of 3-D capillarity on diffusional dynamics. Also, a numerical model was developed to study the effect of electromigration on void migration and coalescence. Void migration rates were found to be slowed from compressive forces and the nature of the deformation concurrent with migration was examined through the lens of chemical potential. Void migration was also validated with previously reported theoretical explanations. Void coalescence and void budding were investigated and found to be dependent on the magnitude of interfacial energy and electric field strength. A grasp on the mechanistic pathways of electromigration-induced defect evolution is imperative to the development of reliable electronics, especially as electronic devices continue to miniaturize. This dissertation displays a working understanding of the mechanistic pathways interconnects can fail due to electromigration, as well as provide direction for future research and understanding.
ContributorsFarmer, William McHann (Author) / Ankit, Kumar (Thesis advisor) / Chawla, Nikhilesh (Committee member) / Jiao, Yang (Committee member) / McCue, Ian (Committee member) / Arizona State University (Publisher)
Created2022
161968-Thumbnail Image.png
Description
Multiphase flows are relevant to various industrial processes and are also a ubiquitous feature of nature. Atomization is a Gas-Liquid class of multiphase flow in which the liquid bulk disintegrates into a spectrum of drops. The final drop size distribution of fragmenting liquids is important and is crucial to quantifying

Multiphase flows are relevant to various industrial processes and are also a ubiquitous feature of nature. Atomization is a Gas-Liquid class of multiphase flow in which the liquid bulk disintegrates into a spectrum of drops. The final drop size distribution of fragmenting liquids is important and is crucial to quantifying the performance of atomizers. This thesis implements two models of ligament breakup. The first model provides a method to determine the droplet size distribution of fragmenting ligaments. The second model provides a relation between ligament stretching, aspect ratio and dimensionless properties like Ohnesorge and Weber numbers for ligaments being stretched by aerodynamic force. The first model by Villermaux et.al considers a ligament as a linear succession of liquid blobs which undergo continuous interplay during destabilization. The evolution of their size distribution ultimately rules the droplet size distribution which follow a gamma distribution [14]. The results show that the Direct Numerical Simulations (DNS) of ligaments with different perturbations fragmented into very few drops and cannot be used to confirm that they follow the predicted gamma distribution. The second model considers a ligament breakup due to Rayleigh-Plateau Instability and provides an equation for ligament stretching. Through test runs the proportionality constant in the equation is determined by a least square fit. The theoretical number of drops is compared with the number of drops resulting from the Direct Numerical Simulation of ligament with a sinusoidal perturbation. It is found that the wavelength of the initial perturbation does not determine the number of drops obtained by ligament breakup
ContributorsRama Krishna, Prathyush (Author) / Herrmann, Marcus (Thesis advisor) / Takahashi, Timothy (Committee member) / Huang, Huei-Ping (Committee member) / Arizona State University (Publisher)
Created2021
168684-Thumbnail Image.png
Description本文对中国制药企业并购溢价影响因素进行了研究,提出了对制药企业并购非常重要的两个新的影响因素:可生产药品批文和在研新药批文。本文以2011年1月—2019年12月间我国制药行业上市公司并购事件为样本,对在研新药和可生产药品批文的价值从四个维度度量:是否有在研新药和可生产药品批文;在研新药数量及可生产药品批文数量;根据创新药和仿制药两个类别进行细分;标的企业所拥有的在研新药和可生产药品批文的市场价值。论文发现药品批文对企业并购溢价的影响不是很显著。进一步的,本文探究了药品批文对主并企业的对被并购公司的估值的影响。实证结果表明,我国制药企业在并购估值时确实会考虑到在研新药和可生产药品批文的价值。本文还发现对于可生产药品来说,相对创新药,被并购公司持有的仿制药批文影响更显著。而对于在研新药来说,主并企业更看重在研的创新药,在研仿制药对并购估值的影响不大。最后,本文选取了两个代表性案例进一步分析和探讨药品批文对企业并购的影响。
ContributorsYe, Tao (Author) / Shen, Wei (Thesis advisor) / Chang, Chun (Thesis advisor) / Jiang, Zhan (Committee member) / Gu, Bin (Committee member) / Arizona State University (Publisher)
Created2022
168665-Thumbnail Image.png
Description
Disordered many-body systems are ubiquitous in condensed matter physics, materials science and biological systems. Examples include amorphous and glassy states of matter, granular materials, and tissues composed of packings of cells in the extra-cellular matrix (ECM). Understanding the collective emergent properties in these systems is crucial to improving the capability

Disordered many-body systems are ubiquitous in condensed matter physics, materials science and biological systems. Examples include amorphous and glassy states of matter, granular materials, and tissues composed of packings of cells in the extra-cellular matrix (ECM). Understanding the collective emergent properties in these systems is crucial to improving the capability for controlling, engineering and optimizing their behaviors, yet it is extremely challenging due to their complexity and disordered nature. The main theme of the thesis is to address this challenge by characterizing and understanding a variety of disordered many-body systems via unique statistical geometrical and topological tools and the state-of-the-art simulation methods. Two major topics of the thesis are modeling ECM-mediated multicellular dynamics and understanding hyperuniformity in 2D material systems. Collective migration is an important mode of cell movement for several biological processes, and it has been the focus of a large number of studies over the past decades. Hyperuniform (HU) state is a critical state in a many-particle system, an exotic property of condensed matter discovered recently. The main focus of this thesis is to study the mechanisms underlying collective cell migration behaviors by developing theoretical/phenomenological models that capture the features of ECM-mediated mechanical communications in vitro and investigate general conditions that can be imposed on hyperuniformity-preserving and hyperuniformity-generating operations, as well as to understand how various novel transport physical properties arise from the unique hyperuniform long-range correlations.
ContributorsZheng, Yu (Author) / Jiao, Yang (Thesis advisor) / Zhuang, Houlong (Committee member) / Beckstein, Oliver (Committee member) / Ros, Robert (Committee member) / Arizona State University (Publisher)
Created2022
168670-Thumbnail Image.png
Description汽车行业属于国家支柱型产业,创造了高额的产值,增加了就业岗位。随着汽车生产行业竞争日趋激烈的趋势影响,汽车经销商在未来会出现明显的分化,并且逐步向头部集中。基于这样的行业背景,本项研究开展汽车经销商整体经营和盈利能力等方面的详细深入分析,即系统整合汽车经销商业务运营层面和财务层面数据,结合统计研究方法,对经销商盈利能力进行系统且详实归因分析,从而试别驱动盈利能力的关键业务要素。其研究成果能够完善对行业发展规律和经营模式系统性理解,从而进一步指导该领域的相关业务实践,提高经销商整体经营业绩。本课题通过四个阶段来开展经销商整体经营与盈利归因的相关研究。首先,本课题梳理了中国汽车消费行业发展的历史,同时阐述样本期内(2018-2020年)国内宏观经济和汽车消费市场的特征进行,并介绍X品牌汽车经销商的地理分布、资质和业绩评级体系、自身经营特征以及汽车生产商对经销商扶持政策等方面。在第二阶段,本课题聚焦研究假设、模型与方法,通过对X品牌汽车经销商的业务结构和运营管理开展分析,并逐步识别影响经销商盈利的关键指标变量,并提出研究假设和相关模型(即时间序列模型和面板回归模型)。在第三阶段,本课题首先开展经销商相关信息整体性统计分析,获得关键业务指标在样本期内动态特征,并结合时间序列回归模型探讨各项业务指标对经销商整体盈利能力的影响程度。在第四阶段,本课题采用(个体)固定效应的面板回归模型来研究不同组别(控制)条件下经销商盈利能力的影响因素以及其盈利能力对这些因素的敏感程度,从而更深入和全面地揭示影响经销商盈利能力的潜在因素。 基于上述四阶段的研究结果,本研究进一步就提升经销商盈利能力展开讨论,并提出相应对策。本课题相关结论仅从X品牌汽车经销商经营和财务数据进行定性和定量分析获得,但衷心希望本研究的成果能够对汽车经销商改善经营业务方面能起到实践上的借鉴和指导意义。
ContributorsPan, Guangxiong (Author) / Shen, Wei (Thesis advisor) / Wu, Fei (Thesis advisor) / Zhu, Qigui (Committee member) / Arizona State University (Publisher)
Created2022