Matching Items (255)
150329-Thumbnail Image.png
Description
The flow around a golf ball is studied using direct numerical simulation (DNS). An immersed boundary approach is adopted in which the incompressible Navier-Stokes equations are solved using a fractional step method on a structured, staggered grid in cylindrical coordinates. The boundary conditions on the surface are imposed using momentum

The flow around a golf ball is studied using direct numerical simulation (DNS). An immersed boundary approach is adopted in which the incompressible Navier-Stokes equations are solved using a fractional step method on a structured, staggered grid in cylindrical coordinates. The boundary conditions on the surface are imposed using momentum forcing in the vicinity of the boundary. The flow solver is parallelized using a domain decomposition strategy and message passing interface (MPI), and exhibits linear scaling on as many as 500 processors. A laminar flow case is presented to verify the formal accuracy of the method. The immersed boundary approach is validated by comparison with computations of the flow over a smooth sphere. Simulations are performed at Reynolds numbers of 2.5 × 104 and 1.1 × 105 based on the diameter of the ball and the freestream speed and using grids comprised of more than 1.14 × 109 points. Flow visualizations reveal the location of separation, as well as the delay of complete detachment. Predictions of the aerodynamic forces at both Reynolds numbers are in reasonable agreement with measurements. Energy spectra of the velocity quantify the dominant frequencies of the flow near separation and in the wake. Time-averaged statistics reveal characteristic physical patterns in the flow as well as local trends within dimples. A mechanism of drag reduction due to the dimples is confirmed, and metrics for dimple optimization are proposed.
ContributorsSmith, Clinton E (Author) / Squires, Kyle D (Thesis advisor) / Balaras, Elias (Committee member) / Herrmann, Marcus (Committee member) / Adrian, Ronald (Committee member) / Stanzione, Daniel C (Committee member) / Calhoun, Ronald (Committee member) / Arizona State University (Publisher)
Created2011
150092-Thumbnail Image.png
Description
The evolution of single hairpin vortices and multiple interacting hairpin vortices are studied in direct numerical simulations of channel flow at Re-tau=395. The purpose of this study is to observe the effects of increased Reynolds number and varying initial conditions on the growth of hairpins and the conditions under which

The evolution of single hairpin vortices and multiple interacting hairpin vortices are studied in direct numerical simulations of channel flow at Re-tau=395. The purpose of this study is to observe the effects of increased Reynolds number and varying initial conditions on the growth of hairpins and the conditions under which single hairpins autogenerate hairpin packets. The hairpin vortices are believed to provide a unified picture of wall turbulence and play an important role in the production of Reynolds shear stress which is directly related to turbulent drag. The structures of the initial three-dimensional vortices are extracted from the two-point spatial correlation of the fully turbulent direct numerical simulation of the velocity field by linear stochastic estimation and embedded in a mean flow having the profile of the fully turbulent flow. The Reynolds number of the present simulation is more than twice that of the Re-tau=180 flow from earlier literature and the conditional events used to define the stochastically estimated single vortex initial conditions include a number of new types of events such as quasi-streamwise vorticity and Q4 events. The effects of parameters like strength, asymmetry and position are evaluated and compared with existing results in the literature. This study then attempts to answer questions concerning how vortex mergers produce larger scale structures, a process that may contribute to the growth of length scale with increasing distance from the wall in turbulent wall flows. Multiple vortex interactions are studied in detail.
ContributorsParthasarathy, Praveen Kumar (Author) / Adrian, Ronald (Thesis advisor) / Huang, Huei-Ping (Committee member) / Herrmann, Marcus (Committee member) / Arizona State University (Publisher)
Created2011
151838-Thumbnail Image.png
Description
The objective of this research is to develop methods for generating the Tolerance-Map for a line-profile that is specified by a designer to control the geometric profile shape of a surface. After development, the aim is to find one that can be easily implemented in computer software using existing libraries.

The objective of this research is to develop methods for generating the Tolerance-Map for a line-profile that is specified by a designer to control the geometric profile shape of a surface. After development, the aim is to find one that can be easily implemented in computer software using existing libraries. Two methods were explored: the parametric modeling method and the decomposed modeling method. The Tolerance-Map (T-Map) is a hypothetical point-space, each point of which represents one geometric variation of a feature in its tolerance-zone. T-Maps have been produced for most of the tolerance classes that are used by designers, but, prior to the work of this project, the method of construction required considerable intuitive input, rather than being based primarily on automated computer tools. Tolerances on line-profiles are used to control cross-sectional shapes of parts, such as every cross-section of a mildly twisted compressor blade. Such tolerances constrain geometric manufacturing variations within a specified two-dimensional tolerance-zone. A single profile tolerance may be used to control position, orientation, and form of the cross-section. Four independent variables capture all of the profile deviations: two independent translations in the plane of the profile, one rotation in that plane, and the size-increment necessary to identify one of the allowable parallel profiles. For the selected method of generation, the line profile is decomposed into three types of segments, a primitive T-Map is produced for each segment, and finally the T-Maps from all the segments are combined to obtain the T-Map for the given profile. The types of segments are the (straight) line-segment, circular arc-segment, and the freeform-curve segment. The primitive T-Maps are generated analytically, and, for freeform-curves, they are built approximately with the aid of the computer. A deformation matrix is used to transform the primitive T-Maps to a single coordinate system for the whole profile. The T-Map for the whole line profile is generated by the Boolean intersection of the primitive T-Maps for the individual profile segments. This computer-implemented method can generate T-Maps for open profiles, closed ones, and those containing concave shapes.
ContributorsHe, Yifei (Author) / Davidson, Joseph (Thesis advisor) / Shah, Jami (Committee member) / Herrmann, Marcus (Committee member) / Arizona State University (Publisher)
Created2013
151914-Thumbnail Image.png
Description
Derived from the necessity to increase testing capabilities of hybrid rocket motor (HRM) propulsion systems for Daedalus Astronautics at Arizona State University, a small-scale motor and test stand were designed and developed to characterize all components of the system. The motor is designed for simple integration and setup, such that

Derived from the necessity to increase testing capabilities of hybrid rocket motor (HRM) propulsion systems for Daedalus Astronautics at Arizona State University, a small-scale motor and test stand were designed and developed to characterize all components of the system. The motor is designed for simple integration and setup, such that both the forward-end enclosure and end cap can be easily removed for rapid integration of components during testing. Each of the components of the motor is removable allowing for a broad range of testing capabilities. While examining injectors and their potential it is thought ideal to obtain the highest regression rates and overall motor performance possible. The oxidizer and fuel are N2O and hydroxyl-terminated polybutadiene (HTPB), respectively, due to previous experience and simplicity. The injector designs, selected for the same reasons, are designed such that they vary only in the swirl angle. This system provides the platform for characterizing the effects of varying said swirl angle on HRM performance.
ContributorsSummers, Matt H (Author) / Lee, Taewoo (Thesis advisor) / Chen, Kangping (Committee member) / Wells, Valana (Committee member) / Arizona State University (Publisher)
Created2013
151874-Thumbnail Image.png
Description
Wind measurements are fundamental inputs for the evaluation of potential energy yield and performance of wind farms. Three-dimensional scanning coherent Doppler lidar (CDL) may provide a new basis for wind farm site selection, design, and control. In this research, CDL measurements obtained from multiple wind energy developments are analyzed and

Wind measurements are fundamental inputs for the evaluation of potential energy yield and performance of wind farms. Three-dimensional scanning coherent Doppler lidar (CDL) may provide a new basis for wind farm site selection, design, and control. In this research, CDL measurements obtained from multiple wind energy developments are analyzed and a novel wind farm control approach has been modeled. The possibility of using lidar measurements to more fully characterize the wind field is discussed, specifically, terrain effects, spatial variation of winds, power density, and the effect of shear at different layers within the rotor swept area. Various vector retrieval methods have been applied to the lidar data, and results are presented on an elevated terrain-following surface at hub height. The vector retrieval estimates are compared with tower measurements, after interpolation to the appropriate level. CDL data is used to estimate the spatial power density at hub height. Since CDL can measure winds at different vertical levels, an approach for estimating wind power density over the wind turbine rotor-swept area is explored. Sample optimized layouts of wind farm using lidar data and global optimization algorithms, accounting for wake interaction effects, have been explored. An approach to evaluate spatial wind speed and direction estimates from a standard nested Coupled Ocean and Atmosphere Mesoscale Prediction System (COAMPS) model and CDL is presented. The magnitude of spatial difference between observations and simulation for wind energy assessment is researched. Diurnal effects and ramp events as estimated by CDL and COAMPS were inter-compared. Novel wind farm control based on incoming winds and direction input from CDL's is developed. Both yaw and pitch control using scanning CDL for efficient wind farm control is analyzed. The wind farm control optimizes power production and reduces loads on wind turbines for various lidar wind speed and direction inputs, accounting for wind farm wake losses and wind speed evolution. Several wind farm control configurations were developed, for enhanced integrability into the electrical grid. Finally, the value proposition of CDL for a wind farm development, based on uncertainty reduction and return of investment is analyzed.
ContributorsKrishnamurthy, Raghavendra (Author) / Calhoun, Ronald J (Thesis advisor) / Chen, Kangping (Committee member) / Huang, Huei-Ping (Committee member) / Fraser, Matthew (Committee member) / Phelan, Patrick (Committee member) / Arizona State University (Publisher)
Created2013
152239-Thumbnail Image.png
Description
Production from a high pressure gas well at a high production-rate encounters the risk of operating near the choking condition for a compressible flow in porous media. The unbounded gas pressure gradient near the point of choking, which is located near the wellbore, generates an effective tensile stress on the

Production from a high pressure gas well at a high production-rate encounters the risk of operating near the choking condition for a compressible flow in porous media. The unbounded gas pressure gradient near the point of choking, which is located near the wellbore, generates an effective tensile stress on the porous rock frame. This tensile stress almost always exceeds the tensile strength of the rock and it causes a tensile failure of the rock, leading to wellbore instability. In a porous rock, not all pores are choked at the same flow rate, and when just one pore is choked, the flow through the entire porous medium should be considered choked as the gas pressure gradient at the point of choking becomes singular. This thesis investigates the choking condition for compressible gas flow in a single microscopic pore. Quasi-one-dimensional analysis and axisymmetric numerical simulations of compressible gas flow in a pore scale varicose tube with a number of bumps are carried out, and the local Mach number and pressure along the tube are computed for the flow near choking condition. The effects of tube length, inlet-to-outlet pressure ratio, the number of bumps and the amplitude of the bumps on the choking condition are obtained. These critical values provide guidance for avoiding the choking condition in practice.
ContributorsYuan, Jing (Author) / Chen, Kangping (Thesis advisor) / Wang, Liping (Committee member) / Huang, Huei-Ping (Committee member) / Arizona State University (Publisher)
Created2013
151543-Thumbnail Image.png
Description
The numerical climate models have provided scientists, policy makers and the general public, crucial information for climate projections since mid-20th century. An international effort to compare and validate the simulations of all major climate models is organized by the Coupled Model Intercomparison Project (CMIP), which has gone through several phases

The numerical climate models have provided scientists, policy makers and the general public, crucial information for climate projections since mid-20th century. An international effort to compare and validate the simulations of all major climate models is organized by the Coupled Model Intercomparison Project (CMIP), which has gone through several phases since 1995 with CMIP5 being the state of the art. In parallel, an organized effort to consolidate all observational data in the past century culminates in the creation of several "reanalysis" datasets that are considered the closest representation of the true observation. This study compared the climate variability and trend in the climate model simulations and observations on the timescales ranging from interannual to centennial. The analysis focused on the dynamic climate quantity of zonal-mean zonal wind and global atmospheric angular momentum (AAM), and incorporated multiple datasets from reanalysis and the most recent CMIP3 and CMIP5 archives. For the observation, the validation of AAM by the length-of-day (LOD) and the intercomparison of AAM revealed a good agreement among reanalyses on the interannual and the decadal-to-interdecadal timescales, respectively. But the most significant discrepancies among them are in the long-term mean and long-term trend. For the simulations, the CMIP5 models produced a significantly smaller bias and a narrower ensemble spread of the climatology and trend in the 20th century for AAM compared to CMIP3, while CMIP3 and CMIP5 simulations consistently produced a positive trend for the 20th and 21st century. Both CMIP3 and CMIP5 models produced a wide range of the magnitudes of decadal and interdecadal variability of wind component of AAM (MR) compared to observation. The ensemble means of CMIP3 and CMIP5 are not statistically distinguishable for either the 20th- or 21st-century runs. The in-house atmospheric general circulation model (AGCM) simulations forced by the sea surface temperature (SST) taken from the CMIP5 simulations as lower boundary conditions were carried out. The zonal wind and MR in the CMIP5 simulations are well simulated in the AGCM simulations. This confirmed SST as an important mediator in regulating the global atmospheric changes due to GHG effect.
ContributorsPaek, Houk (Author) / Huang, Huei-Ping (Thesis advisor) / Adrian, Ronald (Committee member) / Wang, Zhihua (Committee member) / Anderson, James (Committee member) / Herrmann, Marcus (Committee member) / Arizona State University (Publisher)
Created2013
151528-Thumbnail Image.png
Description
The heat transfer enhancements available from expanding the cross-section of a boiling microchannel are explored analytically and experimentally. Evaluation of the literature on critical heat flux in flow boiling and associated pressure drop behavior is presented with predictive critical heat flux (CHF) and pressure drop correlations. An optimum channel configuration

The heat transfer enhancements available from expanding the cross-section of a boiling microchannel are explored analytically and experimentally. Evaluation of the literature on critical heat flux in flow boiling and associated pressure drop behavior is presented with predictive critical heat flux (CHF) and pressure drop correlations. An optimum channel configuration allowing maximum CHF while reducing pressure drop is sought. A perturbation of the channel diameter is employed to examine CHF and pressure drop relationships from the literature with the aim of identifying those adequately general and suitable for use in a scenario with an expanding channel. Several CHF criteria are identified which predict an optimizable channel expansion, though many do not. Pressure drop relationships admit improvement with expansion, and no optimum presents itself. The relevant physical phenomena surrounding flow boiling pressure drop are considered, and a balance of dimensionless numbers is presented that may be of qualitative use. The design, fabrication, inspection, and experimental evaluation of four copper microchannel arrays of different channel expansion rates with R-134a refrigerant is presented. Optimum rates of expansion which maximize the critical heat flux are considered at multiple flow rates, and experimental results are presented demonstrating optima. The effect of expansion on the boiling number is considered, and experiments demonstrate that expansion produces a notable increase in the boiling number in the region explored, though no optima are observed. Significant decrease in the pressure drop across the evaporator is observed with the expanding channels, and no optima appear. Discussion of the significance of this finding is presented, along with possible avenues for future work.
ContributorsMiner, Mark (Author) / Phelan, Patrick E (Thesis advisor) / Baer, Steven (Committee member) / Chamberlin, Ralph (Committee member) / Chen, Kangping (Committee member) / Herrmann, Marcus (Committee member) / Arizona State University (Publisher)
Created2013
151944-Thumbnail Image.png
Description
The atomization of a liquid jet by a high speed cross-flowing gas has many applications such as gas turbines and augmentors. The mechanisms by which the liquid jet initially breaks up, however, are not well understood. Experimental studies suggest the dependence of spray properties on operating conditions and nozzle geom-

The atomization of a liquid jet by a high speed cross-flowing gas has many applications such as gas turbines and augmentors. The mechanisms by which the liquid jet initially breaks up, however, are not well understood. Experimental studies suggest the dependence of spray properties on operating conditions and nozzle geom- etry. Detailed numerical simulations can offer better understanding of the underlying physical mechanisms that lead to the breakup of the injected liquid jet. In this work, detailed numerical simulation results of turbulent liquid jets injected into turbulent gaseous cross flows for different density ratios is presented. A finite volume, balanced force fractional step flow solver to solve the Navier-Stokes equations is employed and coupled to a Refined Level Set Grid method to follow the phase interface. To enable the simulation of atomization of high density ratio fluids, we ensure discrete consistency between the solution of the conservative momentum equation and the level set based continuity equation by employing the Consistent Rescaled Momentum Transport (CRMT) method. The impact of different inflow jet boundary conditions on different jet properties including jet penetration is analyzed and results are compared to those obtained experimentally by Brown & McDonell(2006). In addition, instability analysis is performed to find the most dominant insta- bility mechanism that causes the liquid jet to breakup. Linear instability analysis is achieved using linear theories for Rayleigh-Taylor and Kelvin- Helmholtz instabilities and non-linear analysis is performed using our flow solver with different inflow jet boundary conditions.
ContributorsGhods, Sina (Author) / Herrmann, Marcus (Thesis advisor) / Squires, Kyle (Committee member) / Chen, Kangping (Committee member) / Huang, Huei-Ping (Committee member) / Tang, Wenbo (Committee member) / Arizona State University (Publisher)
Created2013
152067-Thumbnail Image.png
Description
A new theoretical model was developed utilizing energy conservation methods in order to determine the fully-atomized cross-sectional Sauter mean diameters of pressure-swirl atomizers. A detailed boundary-layer assessment led to the development of a new viscous dissipation model for droplets in the spray. Integral momentum methods were also used to determine

A new theoretical model was developed utilizing energy conservation methods in order to determine the fully-atomized cross-sectional Sauter mean diameters of pressure-swirl atomizers. A detailed boundary-layer assessment led to the development of a new viscous dissipation model for droplets in the spray. Integral momentum methods were also used to determine the complete velocity history of the droplets and entrained gas in the spray. The model was extensively validated through comparison with experiment and it was found that the model could predict the correct droplet size with high accuracy for a wide range of operating conditions. Based on detailed analysis, it was found that the energy model has a tendency to overestimate the droplet diameters for very low injection velocities, Weber numbers, and cone angles. A full parametric study was also performed in order to unveil some underlying behavior of pressure-swirl atomizers. It was found that at high injection velocities, the kinetic energy in the spray is significantly larger than the surface tension energy, therefore, efforts into improving atomization quality by changing the liquid's surface tension may not be the most productive. From the parametric studies it was also shown how the Sauter mean diameter and entrained velocities vary with increasing ambient gas density. Overall, the present energy model has the potential to provide quick and reasonably accurate solutions for a wide range of operating conditions enabling the user to determine how different injection parameters affect the spray quality.
ContributorsMoradi, Ali (Author) / Lee, Taewoo (Thesis advisor) / Herrmann, Marcus (Committee member) / Huang, Huei-Ping (Committee member) / Arizona State University (Publisher)
Created2013