Matching Items (127)
149763-Thumbnail Image.png
Description
In the 1970s James Watson recognized the inability of conventional DNA replication machinery to replicate the extreme termini of chromosomes known as telomeres. This inability is due to the requirement of a building block primer and was termed the end replication problem. Telomerase is nature's answer to the

In the 1970s James Watson recognized the inability of conventional DNA replication machinery to replicate the extreme termini of chromosomes known as telomeres. This inability is due to the requirement of a building block primer and was termed the end replication problem. Telomerase is nature's answer to the end replication problem. Telomerase is a ribonucleoprotein which extends telomeres through reverse transcriptase activity by reiteratively copying a short intrinsic RNA sequence to generate 3' telomeric extensions. Telomeres protect chromosomes from erosion of coding genes during replication, as well as differentiate native chromosome ends from double stranded breaks. However, controlled erosion of telomeres functions as a naturally occurring molecular clock limiting the replicative capacity of cells. Telomerase is over activated in many cancers, while inactivation leads to multiple lifespan limiting human diseases. In order to further study the interaction between telomerase RNA (TR) and telomerase reverse transcriptase protein (TERT), vertebrate TERT fragments were screened for solubility and purity following bacterial expression. Soluble fragments of medaka TERT including the RNA binding domain (TRBD) were identified. Recombinant medaka TRBD binds specifically to telomerase RNA CR4/CR5 region. Ribonucleotide and amino acid pairs in close proximity within the medaka telomerase RNA-protein complex were identified using photo-activated cross-linking in conjunction with mass spectrometry. The identified cross-linking amino acids were mapped on known crystal structures of TERTs to reveal the RNA interaction interface of TRBD. The identification of this RNA TERT interaction interface furthers the understanding of the telomerase complex at a molecular level and could be used for the targeted interruption of the telomerase complex as a potential cancer treatment.
ContributorsBley, Christopher James (Author) / Chen, Julian (Thesis advisor) / Allen, James (Committee member) / Ghirlanda, Giovanna (Committee member) / Arizona State University (Publisher)
Created2011
147979-Thumbnail Image.png
Description

Traumatic brain injury involves a primary mechanical injury that is followed by a secondary<br/>inflammatory cascade. The inflammatory cascade in the CNS releases cytokines which are<br/>associated with leukocytosis and a systemic immune response. Acute changes to peripheral<br/>immune cell populations post-TBI include a 4.5-fold increase of neutrophils 3 hours post-injury,<br/>and 2.7-fold or

Traumatic brain injury involves a primary mechanical injury that is followed by a secondary<br/>inflammatory cascade. The inflammatory cascade in the CNS releases cytokines which are<br/>associated with leukocytosis and a systemic immune response. Acute changes to peripheral<br/>immune cell populations post-TBI include a 4.5-fold increase of neutrophils 3 hours post-injury,<br/>and 2.7-fold or higher increase of monocytes 24 hours post-injury. Flow Cytometry is a<br/>technique that integrates fluidics, optics, and electronics to characterize cells based on their light<br/>scatter and antigen expression via monoclonal antibodies conjugated to fluorochromes. Flow<br/>cytometry is a valuable tool in cell characterization however the standard technique for data<br/>analysis, manual gating, is associated with inefficiency, subjectivity, and irreproducibility.<br/>Unsupervised analysis that uses algorithms packaged as plug-ins for flow cytometry analysis<br/>software has been discussed as a solution to the limits of manual gating and as an alternative<br/>method of data visualization and exploration. This investigation evaluated the use of tSNE<br/>(dimensionality reduction algorithm) and FlowSOM (population clustering algorithm)<br/>unsupervised flow cytometry analysis of immune cell population changes in female mice that<br/>have been exposed to a LPS-induced systemic inflammatory challenge, results were compared to<br/>those of manual gating. Flow cytometry data was obtained from blood samples taken prior to and<br/>24 hours after LPS injection. Unsupervised analysis was able to identify populations of<br/>neutrophils and pro-inflammatory/anti-inflammatory monocytes, it also identified several more<br/>populations however further inquiry with a more specific fluorescent panel would be required to<br/>establish the specificity and validity of these populations. Unsupervised analysis with tSNE and<br/>FlowSOM demonstrated the efficient and intuitive nature of the technique, however it also<br/>illustrated the importance of the investigator in preparing data and modulating plug-in settings.

ContributorsDudic, Ahmed (Author) / Stabenfeldt, Sarah (Thesis director) / Lifshitz, Jonathan (Committee member) / Rojas, Luisa (Committee member) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
147801-Thumbnail Image.png
Description

Premature babies are at risk of death from immature lung development. For this reason, pregnant mothers at risk for preterm delivery are administered dexamethasone (DEX), a synthetic glucocorticoid that promotes fetal lung development. However, exposure to DEX in utero is associated with low birth weight and cardiovascular development pathologies. Moreover,

Premature babies are at risk of death from immature lung development. For this reason, pregnant mothers at risk for preterm delivery are administered dexamethasone (DEX), a synthetic glucocorticoid that promotes fetal lung development. However, exposure to DEX in utero is associated with low birth weight and cardiovascular development pathologies. Moreover, our lab found that DEX administration in-utero leads to a sex-specific increase in stress-induced tachycardia in female, but not male offspring. This project seeks to expand on this preliminary finding of the heart by examining local effectors of activity from the sympathetic system (tyrosine hydroxylase and catechol-o-methyltransferase). Tyrosine hydroxylase was measured as it catalyzes the rate limiting step of norepinephrine synthesis while catechol-O- methyltransferase was studied as it catalyzes the degradation of norepinephrine. Acetylcholinesterase was used to measure parasympathetic activity as it catalyzes the degradation of the primary neurotransmitter of the parasympathetic nervous system, acetylcholine. Analyses of sympathetic as well as parasympathetic activity were done to determine influences of in-utero DEX exposure on autonomic regulation in adulthood. Pregnant rats were administered DEX (0.4 mg/kg, i.p.) or vehicle (20% w/v 2-hydroxypropyl ß- cyclodextran) at gestation days 18-21, with euthanasia of offspring occurring at around the time the offspring reached 13-15 weeks of age. Left ventricles and right atria were pulverized, processed and subjected to western blot analysis to determine expression of proteins of interest. Males exposed to DEX in-utero saw a decrease in tyrosine hydroxylase expression in left ventricle and right atrium when compared to vehicle control, a difference not seen with females. In addition, catechol-o-methyltransferase expression was increased in right atria from male, but not female rats. Acetylcholinesterase expression was reduced in the right atria of female, but not male rats. The present findings suggest reduced norepinephrine signaling in the heart of male, but not female DEX-exposed offspring. Given that we have previously found that female, but not male rats exhibit exaggerated stress-induced tachycardia, our current findings suggest that males possess a sex-specific compensatory mechanism allowing the heart to resist increased sympathetic signaling from the brain, one that females do not possess. The underlying mechanics of this proposed mechanism are unclear, and further investigation is needed in this subject to determine the significance of the findings from our study.

ContributorsSharma, Arpan (Author) / Conrad, Cheryl (Thesis director) / Hale, Taben (Committee member) / Department of Psychology (Contributor) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
149963-Thumbnail Image.png
Description
Telomerase ribonucleoprotein is a unique reverse transcriptase that adds telomeric DNA repeats to chromosome ends. Telomerase RNA (TER) is extremely divergent in size, sequence and has to date only been identified in vertebrate, yeast, ciliate and plant species. Herein, the identification and characterization of TERs from an evolutionarily distinct group,

Telomerase ribonucleoprotein is a unique reverse transcriptase that adds telomeric DNA repeats to chromosome ends. Telomerase RNA (TER) is extremely divergent in size, sequence and has to date only been identified in vertebrate, yeast, ciliate and plant species. Herein, the identification and characterization of TERs from an evolutionarily distinct group, filamentous fungi, is presented. Based on phylogenetic analysis of 69 TER sequences and mutagenesis analysis of in vitro reconstituted Neurospora telomerase, we discovered a conserved functional core in filamentous fungal TERs sharing homologous structural features with vertebrate TERs. This core contains the template-pseudoknot and P6/P6.1 domains, essential for enzymatic activity, which retain function in trans. The in vitro reconstituted Neurospora telomerase is highly processive, synthesizing canonical TTAGGG repeats. Similar to Schizosaccharomycetes pombe, filamentous fungal TERs utilize the spliceosomal splicing machinery for 3' processing. Neurospora telomerase, while associating with the Est1 protein in vivo, does not bind homologous Ku or Sm proteins found in both budding and fission yeast telomerase holoenzyme, suggesting a unique biogenesis pathway. The development of Neurospora as a model organism to study telomeres and telomerase may shed light upon the evolution of the canonical TTAGGG telomeric repeat and telomerase processivity within fungal species.
ContributorsQi, Xiaodong (Author) / Chen, Julian (Thesis advisor) / Ghirlanda, Giovanna (Committee member) / Chaput, John (Committee member) / Arizona State University (Publisher)
Created2011
150063-Thumbnail Image.png
Description
Systemic lupus erytematosus (SLE) is an autoimmune disease where the immune system is reactive to self antigens resulting in manifestations like glomerulonephritis and arthritis. The immune system also affects the central nervous system (known as CNS-SLE) leading to neuropsychiatric manifestations such as depression, cognitive impairment, psychosis and seizures.

Systemic lupus erytematosus (SLE) is an autoimmune disease where the immune system is reactive to self antigens resulting in manifestations like glomerulonephritis and arthritis. The immune system also affects the central nervous system (known as CNS-SLE) leading to neuropsychiatric manifestations such as depression, cognitive impairment, psychosis and seizures. A subset of pathogenic brain-reactive autoantibodies (BRAA) is hypothesized to bind to integral membrane brain proteins, affecting their function, leading to CNS-SLE. I have tested this BRAA hypothesis, using our lupus-mouse model the MRL/lpr mice, and have found it to be a reasonable explanation for some of the manifestations of CNS-SLE. Even when the MRL/lpr had a reduced autoimmune phenotype, their low BRAA sera levels correlated with CNS involvement. The correlation existed between BRAA levels to integral membrane protein and depressive-like behavior. These results were the first to show a correlation between behavioral changes and BRAA levels from brain membrane antigen as oppose to cultured neuronal cells. More accurate means of predicting and diagnosing lupus and CNS-SLE is necessary. Using microarray technology I was able to determine peptide sets that could be predictive and diagnostic of lupus and each specific CNS manifestation. To knowledge no test currently exists that can effectively diagnose lupus and distinguish between each CNS manifestations. Using the peptide sets, I was able to determine possible natural protein biomarkers for each set as well as for five monoclonal BRAA from one MRL/lpr. These biomarkers can provide specific targets for therapy depending on the manifestation. It was necessary to investigate how these BRAA enter the brain. I hypothesized that substance P plays a role in altering the blood-brain barrier (BBB) allowing these BRAA to enter and affect brain function, when bound to its neurokinin-1 receptor (NK-1R). Western blotting results revealed an increase in the levels of NK-1R in the brain of the MRL/lpr compared to the MRL/mp. These MRL/lpr with increased levels of both NK-1R and BRAA displayed CNS dysfunction. Together, these results demonstrate that NK-1R may play a role in CNS manifestations. Overall, the research conducted here, add to the role that BRAA are playing in CNS-lupus.
ContributorsWilliams, Stephanie (Author) / Hoffman, Steven A (Thesis advisor) / Conrad, Cheryl (Committee member) / Chen, Julian (Committee member) / Orchinik, Miles (Committee member) / Arizona State University (Publisher)
Created2011
149837-Thumbnail Image.png
Description
The failure to withhold inappropriate behavior is a central component of most impulse control disorders, including Attention Deficit Hyperactivity Disorder (ADHD). The present study examined the effects of housing environment and methylphenidate (a drug often prescribed for ADHD) on the performance of rats in two response inhibition tasks: differential reinforcement

The failure to withhold inappropriate behavior is a central component of most impulse control disorders, including Attention Deficit Hyperactivity Disorder (ADHD). The present study examined the effects of housing environment and methylphenidate (a drug often prescribed for ADHD) on the performance of rats in two response inhibition tasks: differential reinforcement of low rate (DRL) and fixed minimum interval (FMI). Both tasks required rats to wait a fixed amount of time (6 s) before emitting a reinforced response. The capacity to withhold the target response (volitional inhibition) and timing precision were estimated on the basis of performance in each of the tasks. Paradoxically, rats housed in a mildly enriched environment that included a conspecific displayed less volitional inhibition in both tasks compared to rats housed in an isolated environment. Enriched housing, however, increased timing precision. Acute administration of methylphenidate partially reversed the effects of enriched housing. Implications of these results in the assessment and treatment of ADHD-related impulsivity are discussed.
ContributorsHill, Jade C (Author) / Sanabria, Federico (Thesis advisor) / Killeen, Peter (Committee member) / Neisewander, Janet (Committee member) / Arizona State University (Publisher)
Created2011
147512-Thumbnail Image.png
Description

In 2014 alone, 40% of all drug abuse-related emergency department visits involved cocaine, and despite the detrimental effects there is still no FDA approved treatment for cocaine use disorders (CUDs; Dawn, 2014). Studies show that serotonin 1B receptor (5HT1BR) agonists modulate cocaine abuse-related behaviors in opposite directions depending on the

In 2014 alone, 40% of all drug abuse-related emergency department visits involved cocaine, and despite the detrimental effects there is still no FDA approved treatment for cocaine use disorders (CUDs; Dawn, 2014). Studies show that serotonin 1B receptor (5HT1BR) agonists modulate cocaine abuse-related behaviors in opposite directions depending on the phase of the addiction cycle in male rats. In particular, the selective 5HT1BR agonist, CP94,253, facilitates cocaine intake during maintenance of daily cocaine self-administration. Paradoxically, after 21 days of abstinence, CP94,253 attenuates cocaine intake in male rats on a low effort fixed ratio 5 (FR5) and a high effort progressive ratio (PR) schedule of reinforcement. PR measures motivation as it requires an exponentially increasing number of lever responses to obtain the next reinforcer after a successful reinforcer. In contrast to male rats, we recently found CP94,253 attenuates cocaine intake before and after abstinence on an FR5 schedule of reinforcement in female rats, suggesting the attenuating effects of CP94,253 on cocaine intake is not dependent on a period of abstinence in females. However, the effect of CP94,253 on motivation for cocaine has not yet been examined in female rats. Therefore, we addressed this gap in the present study. Female Sprague-Dawley rats were trained to self-administer 0.375 mg/kg, IV cocaine or to obtain sucrose pellets (45 mg) on a PR schedule of reinforcement and were then pretreated with vehicle or CP94,253 (3.2, 5.6 and 10 mg/kg, SC) prior to their self-administration session. A separate cohort was pretreated with CP94,253 to examine the effects of CP94,253 on cocaine-seeking behavior (i.e., operant responses when cocaine is no longer available) and spontaneous locomotion after 21 or 60 days of abstinence. The preliminary findings show that CP94,253 has minimal impacts on decreasing cocaine intake on a PR schedule in female rats but decreases cue reactivity up to 60 days after abstinence in female rats. These findings suggest that 5-HT1BR agonists may be useful treatments for cocaine craving.

ContributorsRuscitti, Brielle Allesandra (Author) / Neisewander, Janet (Thesis director) / Powell, Gregory (Committee member) / Scott, Samantha (Committee member) / School of Life Sciences (Contributor, Contributor) / School of Human Evolution & Social Change (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
151693-Thumbnail Image.png
Description
The principle of Darwinian evolution has been applied in the laboratory to nucleic acid molecules since 1990, and led to the emergence of in vitro evolution technique. The methodology of in vitro evolution surveys a large number of different molecules simultaneously for a pre-defined chemical property, and enrich for molecules

The principle of Darwinian evolution has been applied in the laboratory to nucleic acid molecules since 1990, and led to the emergence of in vitro evolution technique. The methodology of in vitro evolution surveys a large number of different molecules simultaneously for a pre-defined chemical property, and enrich for molecules with the particular property. DNA and RNA sequences with versatile functions have been identified by in vitro selection experiments, but many basic questions remain to be answered about how these molecules achieve their functions. This dissertation first focuses on addressing a fundamental question regarding the molecular recognition properties of in vitro selected DNA sequences, namely whether negatively charged DNA sequences can be evolved to bind alkaline proteins with high specificity. We showed that DNA binders could be made, through carefully designed stringent in vitro selection, to discriminate different alkaline proteins. The focus of this dissertation is then shifted to in vitro evolution of an artificial genetic polymer called threose nucleic acid (TNA). TNA has been considered a potential RNA progenitor during early evolution of life on Earth. However, further experimental evidence to support TNA as a primordial genetic material is lacking. In this dissertation we demonstrated the capacity of TNA to form stable tertiary structure with specific ligand binding property, which suggests a possible role of TNA as a pre-RNA genetic polymer. Additionally, we discussed the challenges in in vitro evolution for TNA enzymes and developed the necessary methodology for future TNA enzyme evolution.
ContributorsYu, Hanyang (Author) / Chaput, John C (Thesis advisor) / Chen, Julian (Committee member) / Yan, Hao (Committee member) / Arizona State University (Publisher)
Created2013
151807-Thumbnail Image.png
Description
The maternal separation (MS) paradigm is an animal model of early life stress. Animals subjected to MS during the first two weeks of life display altered behavioral and neuroendocrinological stress responses as adults. MS also produces altered responsiveness to and self-administration (SA) of various drugs of abuse including cocaine, ethanol,

The maternal separation (MS) paradigm is an animal model of early life stress. Animals subjected to MS during the first two weeks of life display altered behavioral and neuroendocrinological stress responses as adults. MS also produces altered responsiveness to and self-administration (SA) of various drugs of abuse including cocaine, ethanol, opioids, and amphetamine. Methamphetamine (METH) causes great harm to both the individual user and to society; yet, no studies have examined the effects of MS on METH SA. This study was performed to examine the effects of MS on the acquisition of METH SA, extinction, and reinstatement of METH-seeking behavior in adulthood. Given the known influence of early life stress and drug exposure on epigenetic processes, group differences in levels of the epigenetic marker methyl CpG binding protein 2 (MeCP2) in the nucleus accumbens (NAc) core were also investigated. Long-Evans pups and dams were separated on postnatal days (PND) 2-14 for either 180 (MS180) or 15 min (MS15). Male offspring were allowed to acquire METH SA (0.05 mg/kg/infusion) in 15 2-hr daily sessions starting at PND67, followed by extinction training and cue-induced reinstatement of METH-seeking behavior. Rats were then assessed for MeCP2 levels in the NAc core by immunohistochemistry. The MS180 group self-administered significantly more METH and acquired SA earlier than the MS15 group. No group differences in extinction or cue-induced reinstatement were observed. MS15 rats had significantly elevated MeCP2-immunoreactive cells in the NAc core as compared to MS180 rats. Together, these data suggest that MS has lasting influences on METH SA as well as epigenetic processes in the brain reward circuitry.
ContributorsLewis, Candace (Author) / Olive, Micheal F (Thesis advisor) / Conrad, Cheryl (Committee member) / Neisewander, Janet (Committee member) / Arizona State University (Publisher)
Created2013
151758-Thumbnail Image.png
Description
The discovery of DNA helical structure opened the door of modern molecular biology. Ned Seeman utilized DNA as building block to construct different nanoscale materials, and introduced a new field, know as DNA nanotechnology. After several decades of development, different DNA structures had been created, with different dimension, different morphology

The discovery of DNA helical structure opened the door of modern molecular biology. Ned Seeman utilized DNA as building block to construct different nanoscale materials, and introduced a new field, know as DNA nanotechnology. After several decades of development, different DNA structures had been created, with different dimension, different morphology and even with complex curvatures. In addition, after construction of enough amounts DNA structure candidates, DNA structure template, with excellent spatial addressability, had been used to direct the assembly of different nanomaterials, including nanoparticles and proteins, to produce different functional nanomaterials. However there are still many challenges to fabricate functional DNA nanostructures. The first difficulty is that the present finite sized template dimension is still very small, usually smaller than 100nm, which will limit the application for large amount of nanomaterials assembly or large sized nanomaterials assembly. Here we tried to solve this problem through developing a new method, superorigami, to construct finite sized DNA structure with much larger dimension, which can be as large as 500nm. The second problem will be explored the ability of DNA structure to assemble inorganic nanomaterials for novel photonic or electronic properties. Here we tried to utilize DNA Origami method to assemble AuNPs with controlled 3D spacial position for possible chiral photonic complex. We also tried to assemble SWNT with discrete length for possible field effect transistor device. In addition, we tried to mimic in vivo compartment with DNA structure to study internalized enzyme behavior. From our results, constructed DNA cage origami can protect encapsulated enzyme from degradation, and internalized enzyme activity can be boosted for up to 10 folds. In summary, DNA structure can serve as an ideal template for construction of functional nanomaterials with lots of possibilities to be explored.
ContributorsZhao, Zhao (Author) / Yan, Hao (Thesis advisor) / Liu, Yan (Thesis advisor) / Chen, Julian (Committee member) / Seo, Dong-Kyun (Committee member) / Arizona State University (Publisher)
Created2013