Matching Items (285)
136598-Thumbnail Image.png
Description
Information Measurement Theory (IMT) is a decision-making system developed by ASU's Dr. Dean Kashiwagi that emphasizes the inefficiencies caused by decision-making and personal bias. Zen Buddhism is an ancient philosophical system designed to reduce life's suffering. IMT introduces readers to common-sense notions which are spun into more complex topics that

Information Measurement Theory (IMT) is a decision-making system developed by ASU's Dr. Dean Kashiwagi that emphasizes the inefficiencies caused by decision-making and personal bias. Zen Buddhism is an ancient philosophical system designed to reduce life's suffering. IMT introduces readers to common-sense notions which are spun into more complex topics that reveal flaws in our normal modes of thinking. This style is often employed by Buddhist teachers, and the rigidly logical structure of IMT already proves many points tangent to Buddhist philosophy. In my thesis, I have exploited the similarities of IMT and Zen Buddhism to create a website introducing curious Western readers to the beauty of Zen in a refreshingly frank manner. This project will demonstrate the power of information theory and dominant communication to break down barriers towards understanding. Ultimately, this should offer an exciting new path for prospective students of Zen and help to build understanding between ideologically disparate groups.
ContributorsNess, Stuart Conrad (Author) / Kashiwagi, Dean (Thesis director) / Kashiwagi, Jacob (Committee member) / Barrett, The Honors College (Contributor) / Chemical Engineering Program (Contributor) / Economics Program in CLAS (Contributor)
Created2015-05
136620-Thumbnail Image.png
Description
The purpose of this thesis is to create an informational book on gluten-free living. It is our hope that by the end of the book readers will have a better understanding that living with a gluten intolerance or auto-immune disorder does not control one's life. Someone just needs to put

The purpose of this thesis is to create an informational book on gluten-free living. It is our hope that by the end of the book readers will have a better understanding that living with a gluten intolerance or auto-immune disorder does not control one's life. Someone just needs to put in a bit more planning and time in order to travel or eat out. The book goes into detail on every condition on the gluten-sensitivity spectrum. It also goes in-depth on medicines, recipes, and travel.
ContributorsSnodgrass, Allison (Co-author) / Snodgrass, Amanda (Co-author) / Johnston, Carol (Thesis director) / Jacobs, Mark (Committee member) / Barrett, The Honors College (Contributor) / Chemical Engineering Program (Contributor)
Created2015-05
136535-Thumbnail Image.png
Description
Monodispersed zwitterionic microgel (ZI-MG) particles that undergo an extensive, reversible change in volume in response to environmental stimuli such as pH and temperature were synthesized. These aqueous ZI-MG dispersions exhibited a minimum hydrodynamic diameter value at an adjustable isoelectric point(IEP). In addition, the study elucidates the controlled uptake and release

Monodispersed zwitterionic microgel (ZI-MG) particles that undergo an extensive, reversible change in volume in response to environmental stimuli such as pH and temperature were synthesized. These aqueous ZI-MG dispersions exhibited a minimum hydrodynamic diameter value at an adjustable isoelectric point(IEP). In addition, the study elucidates the controlled uptake and release of ionic and nonionic surfactants from these particle systems. The extent of surfactant loading and the ensuing relative swelling/deswelling behaviors within the colloidal polymer networks are explained in terms of their binding interactions.
ContributorsKelley, Morgan Taylor (Author) / Dai, Lenore L. (Thesis director) / Chen, Haobo (Committee member) / Barrett, The Honors College (Contributor) / Chemical Engineering Program (Contributor)
Created2015-05
136556-Thumbnail Image.png
Description
Due to the environmental problems caused by global warming, it has become necessary to reduce greenhouse gas emissions across the planet. Biofuels, such as ethanol, have proven to release cleaner emissions when combusted. However, large scale production of these alcohols is uneconomical and inefficient due to limitations in standard separation

Due to the environmental problems caused by global warming, it has become necessary to reduce greenhouse gas emissions across the planet. Biofuels, such as ethanol, have proven to release cleaner emissions when combusted. However, large scale production of these alcohols is uneconomical and inefficient due to limitations in standard separation processes, the most common being distillation. Pervaporation is a novel separation technique that utilizes a specialized membrane to separate multicomponent solutions. In this research project, pervaporation utilizing ZIF-71/PDMS mixed matrix membranes are investigated to see their ability to recover ethanol from an ethanol/aqueous separation. Membranes with varying nanoparticle concentrations were created and their performances were analyzed. While the final results indicate that no correlation exists between nanoparticle weight percentage and selectivity, this technology is still a promising avenue for biofuel production. Future work will be conducted to improve this existing process and enhance membrane selectivity.
ContributorsHoward, Chelsea Elizabeth (Author) / Lind, Mary Laura (Thesis director) / Nielsen, David (Committee member) / Greenlee, Lauren (Committee member) / Barrett, The Honors College (Contributor) / Chemical Engineering Program (Contributor) / Materials Science and Engineering Program (Contributor)
Created2015-05
136557-Thumbnail Image.png
Description
Lithium-ion batteries are the predominant source of electrical energy storage for most portable electronics applications, including hybrid/electric vehicles, laptops, and cellular phones. However, these batteries pose safety concerns due to their flammability and tendency to violently ignite upon short circuiting or failing. Solid electrolytes are a current research development aimed

Lithium-ion batteries are the predominant source of electrical energy storage for most portable electronics applications, including hybrid/electric vehicles, laptops, and cellular phones. However, these batteries pose safety concerns due to their flammability and tendency to violently ignite upon short circuiting or failing. Solid electrolytes are a current research development aimed at reducing the flammability and reactivity of lithium batteries. The compound Li7La3Zr2O12, or LLZO, exhibits satisfactory ionic conductivity in the cubic phase, which is normally synthesized via doping with Al. It has recently been discovered that synthesizing nanostructured LLZO can stabilize the cubic phase without the need for doping. Here nanostructured LLZO was formed using templating on various cellulosic fibers, including cotton fibers, printer paper, filter paper, and nanocellulose fibrils followed by calcination at 700-800 °C. The effect of templating material, calcination temperature, calcination time, and heating ramp rate on LLZO phase and morphology was thoroughly investigated. Templating was determined to be an effective method for controlling the LLZO size and morphology, and most templating experiments resulted in LLZO fibers or ligaments similar in size and morphology to the original template material. A systematic study on the various experimental parameters was performed, concluding that low calcination time and low ramp rate favored smaller ligament formation. Further, it was verified that cubic phase stabilization occurred for LLZO with ligaments of less than 1 micron on average without the use of doping. This research provides more information regarding the size dependence on cubic LLZO stabilization that has not been previously investigated in detail.
ContributorsGordon, Zachary Daniel (Author) / Chan, Candace K. (Thesis director) / Lin, Jerry (Committee member) / Barrett, The Honors College (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / Chemical Engineering Program (Contributor)
Created2015-05
136570-Thumbnail Image.png
Description
The R-specific alcohol dehydrogenase (RADH or LVIS_0347) from Lactobacillus brevis LB19 was found to possess activity on several short chain aldehydes and ketones. This broad substrate specificity was previously uncharacterized. To demonstrate its relevance to the biofuels industry as well as its broader utility for chiral reductions, a detailed characterization

The R-specific alcohol dehydrogenase (RADH or LVIS_0347) from Lactobacillus brevis LB19 was found to possess activity on several short chain aldehydes and ketones. This broad substrate specificity was previously uncharacterized. To demonstrate its relevance to the biofuels industry as well as its broader utility for chiral reductions, a detailed characterization was performed to further investigate the activity and function of RADH.
ContributorsHalloum, Ibrahim (Co-author) / Pugh, Shawn (Co-author) / Nielsen, David R. (Thesis director) / Rege, Kaushal (Committee member) / Barrett, The Honors College (Contributor) / Chemical Engineering Program (Contributor)
Created2015-05
Description
A niche group of non-traditional sports have grown in popularity over the course of most of the last century but especially in the last few decades. Adventure sports provide alternative forms of physical activity typically involving elements of nature, speed, adrenaline, and physical risk. These sports often take place in

A niche group of non-traditional sports have grown in popularity over the course of most of the last century but especially in the last few decades. Adventure sports provide alternative forms of physical activity typically involving elements of nature, speed, adrenaline, and physical risk. These sports often take place in remote locations, require specialized equipment, and receive limited exposure to those that are not participants. There are many factors that contribute to limited participation within adventure sports but their popularity has continued to grow. Participants frequently devote much of their time, effort, and money showing a true passion for their sport. A case study on water skiers was performed to learn more about adventure sports and their participants. A detailed description of competitive water skiing is included because the competition format is not widely known. It was found that there are a number of reasons why people competitively water ski. The main ones are the unique sensations it offers, the water ski community, and the environment in which it takes place. It is a tough sport to become involved because of the costs, time commitments, access to lakes, and lack of knowledgeable skiers willing to mentor beginners. Although for different reasons, all respondents seemed to truly love the sport. People participate in adventure sports because of the unique aspects and opportunities involved with sports of this nature. The second portion is a coaching guide on all three events, driving, and judging including video examples of all but very high difficulty tricks. These tips and advice have been derived from fifteen years of experience with competitive water skiing. There is no single way to water ski but this is what one skier has found to help at each stage of improvement. It could not have been accomplished without the unimaginable amount of support received from family, coaches, and friends. It is always better to be watched by a coach but that is not always possible. This guide will give skiers a starting point for what to think about to help them figure out how to continue to improve in all three events. With the necessary time, resources, ambition, and circumstances; a small group of people who know nothing about water skiing could learn to become high performance competitors. It will be left with Sun Devil Water Ski Club to help future skiers who do not always have another skier to help teach them.
ContributorsMechler, Mason Charles (Author) / Chhetri, Nalini (Thesis director) / Yesenski, Tara (Committee member) / Barrett, The Honors College (Contributor) / School of Sustainability (Contributor) / Chemical Engineering Program (Contributor)
Created2015-05
136483-Thumbnail Image.png
Description
The research objective is to maintain the A4 nanobody stability during dialysis. Various dialysis buffers were tested and compared, including PBS with varying amounts of the detergent, Tween: low, high, none. Furthermore, PBS, Tris, and HEPES, were tested and compared. PBS without Tween was the worst for preserving A4 stability.

The research objective is to maintain the A4 nanobody stability during dialysis. Various dialysis buffers were tested and compared, including PBS with varying amounts of the detergent, Tween: low, high, none. Furthermore, PBS, Tris, and HEPES, were tested and compared. PBS without Tween was the worst for preserving A4 stability. PBS was determined to be a better dialysis buffer than Tris or HEPES. To find the optimum buffer, other buffers will be tested and compared with PBS; methods such as gravity filtration and lyophilization will be considered as alternatives to dialysis.
ContributorsTao, Kevin Huang (Author) / Sierks, Michael (Thesis director) / Williams, Stephanie (Committee member) / Barrett, The Honors College (Contributor) / Chemical Engineering Program (Contributor)
Created2015-05
136486-Thumbnail Image.png
Description
This study was conducted to better understand the making and measuring of renewable energy goals by the federal government. Three different energy types are studied: wind, solar, and biofuel, for two different federal departments: the Department of Defense and the Department of Energy. A statistical analysis and a meta-analysis of

This study was conducted to better understand the making and measuring of renewable energy goals by the federal government. Three different energy types are studied: wind, solar, and biofuel, for two different federal departments: the Department of Defense and the Department of Energy. A statistical analysis and a meta-analysis of current literature will be the main pieces of information. These departments and energy types were chosen as they represent the highest potential for renewable energy production. It is important to understand any trends in goal setting by the federal government, as well as to understand what these trends represent in terms of predicting renewable energy production. The conclusion for this paper is that the federal government appears to set high goals for renewable energy initiatives. While the goals appear to be high, they are designed based on required characteristics described by the federal government. These characteristics are most often technological advancements, tax incentives, or increased production, with tax incentives having the highest priority. However, more often than not these characteristics are optimistic or simply not met. This leads to the resetting of goals before any goal can be evaluated, making it difficult to determine the goal-setting ability of the federal government.
ContributorsStapleton, Andrew (Co-author) / Charnell, Matthew (Co-author) / Printezis, Antonios (Thesis director) / Kull, Thomas (Committee member) / Barrett, The Honors College (Contributor) / Chemical Engineering Program (Contributor) / Department of Supply Chain Management (Contributor)
Created2015-05
136674-Thumbnail Image.png
Description
As prices for fuel along with the demand for renewable resources grow, it becomes of paramount importance to develop new ways of obtaining the energy needed to carry out the tasks we face daily. Costs of production due to energy and time constraints impose severe limitations on what is viable.

As prices for fuel along with the demand for renewable resources grow, it becomes of paramount importance to develop new ways of obtaining the energy needed to carry out the tasks we face daily. Costs of production due to energy and time constraints impose severe limitations on what is viable. Biological systems, on the other hand, are innately efficient both in terms of time and energy by handling tasks at the molecular level. Utilizing this efficiency is at the core of this research. Proper manipulation of even common proteins can render complexes functionalized for specific tasks. In this case, the coupling of a rhenium-based organometallic ligand to a modified myoglobin containing a zinc porphyrin, allow for efficient reduction of carbon dioxide, resulting in energy that can be harnessed and byproducts which can be used for further processing. Additionally, a rhenium based ligand functionalized via biotin is tested in conjunction with streptavidin and ruthenium-bipyridine.
ContributorsAllen, Jason Kenneth (Author) / Ghirlanda, Giovanna (Thesis director) / Francisco, Wilson (Committee member) / Barrett, The Honors College (Contributor) / Chemical Engineering Program (Contributor)
Created2014-12