Matching Items (263)
Filtering by

Clear all filters

133163-Thumbnail Image.png
Description
This thesis investigates an interpenetrating network of polyacrylamide and poly acrylic acid for use in a dynamic tactile display, which presents traditionally two-dimensional electronic screens as three-dimensional topographical models that can be experienced through touch. This kind of display would allow for greater access to traditionally visual information for the

This thesis investigates an interpenetrating network of polyacrylamide and poly acrylic acid for use in a dynamic tactile display, which presents traditionally two-dimensional electronic screens as three-dimensional topographical models that can be experienced through touch. This kind of display would allow for greater access to traditionally visual information for the visually impaired. This hydrogel demonstrates Upper Critical Solution Temperature (UCST) near room temperature which facilitates a swelling transition, characterized by a sharp increase in swelling as this temperature is surpassed. Through the utilization of light responsive additives, light can trigger this shift, as the additives harness visible light, convert it into heat to raise the gel’s temperature, and increase the volume of the gel. Light-responsive additives explored include chlorophyllin, gold nanoparticles, and carbon black. Each of these additives required unique synthesis planning and strategies in order to optimize the performance of the gels. Synthesized gels were characterized using thermal swelling tests, light response tests and compression tests to determine the material strength. The best performing additive was chlorophyllin and allowed for a 20.8%±4.5% percent weight increase upon exposure to light for 10 minutes. In addition to investigating light-responsive additives, modifications were pursued to alter the overall UCST behavior, such as the addition of sodium chloride. By adding sodium chloride into the hydrogel, the gel was found to have a wider transition. Overall, light-responsive behavior was developed, and further work can be done in improving the response time and degree of swelling in order to make this material more viable for use in a dynamic tactile display.
ContributorsSitterle, Philip Kerry (Author) / Dai, Lenore (Thesis director) / Xu, Yifei (Committee member) / School of Music (Contributor) / Chemical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2018-12
133164-Thumbnail Image.png
Description
In the development of personalized medicine and many other clinical studies, biospecimen integrity serves as the prerequisite for not only the accurate derivation of patient- and disease-specific molecular data from biological specimens but the meaningful downstream validation of biomarkers. However, a large number of preanalytical variables may influence the quality

In the development of personalized medicine and many other clinical studies, biospecimen integrity serves as the prerequisite for not only the accurate derivation of patient- and disease-specific molecular data from biological specimens but the meaningful downstream validation of biomarkers. However, a large number of preanalytical variables may influence the quality of biospecimens in an undesired way and ultimately render the samples unsuitable for molecular analysis. The limited ability to directly reduce discrepancies caused by preanalytical variables gives rise to the need for development and retrospective application of appropriate tests for assessment of biospecimen integrity. Nevertheless, the most standard approaches to assessing biospecimen integrity involve nontrivial procedures. Thus, the need for quality control tools or tests that are readily applicable and can produce results in a straightforward way becomes critical. As one of the major ex vivo biomolecular degradation mechanisms, oxidation that occurs when blood plasma and serum samples are exposed to thawed states during storage and processing is hard to forestall and detect. In an attempt to easily detect and monitor the degree of oxidation, the technique of Fluorescence Resonance Energy Transfer (FRET) was examined to determine whether this concept could be employed to monitor exposure of samples to thawed conditions when controlled by spontaneous oxidative disulfide bonding. The intended mode of usage was envisioned as a fluorescence liquid being stored in a separate compartment but within the same test tube as archived plasma and serum samples. This would allow the assessment of sample integrity by direct visualization of fluorescence under a hand-held black light. The fluorescent dynamic range as well as kinetic control of the reaction were studied. While the addition of Cu(II) proved to facilitate excellent dynamic range with regard to fluorescence quenching, the kinetics of the reaction were too rapid for practical use. Further investigation revealed that the fluorescence quenching mechanism might have actually occurred via Intramolecular Charge Transfer (ICT) rather than FRET mediated by oxidative disulfide bond formation. Introduction of Cu(II) via copper metal slowed fluorescence quenching to the point of practical utility; facilitating demonstration that storing at room temperature, refrigerating or freezing the samples delayed fluorescence quenching to different extents. To establish better kinetic control, future works will focus on establishing controlled, thoroughly understood kinetic release of Cu(II) from copper metal.
ContributorsZhang, Zihan (Author) / Borges, Chad (Thesis director) / Emady, Heather (Committee member) / Williams, Peter (Committee member) / Chemical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2018-12
132448-Thumbnail Image.png
Description
The solid municipal waste contains approximately 60% of organic matter and after varying temperature, pressure and residence time as factors, the temperature influenced the yield at least twice more than the residence time. The pressure had the least effect on the production of the syngas. Different types of hydrogen separation

The solid municipal waste contains approximately 60% of organic matter and after varying temperature, pressure and residence time as factors, the temperature influenced the yield at least twice more than the residence time. The pressure had the least effect on the production of the syngas. Different types of hydrogen separation were explored ranging from pressure swing adsorption (PSA) to water splitting, factional/cryogenic method and then hydrogen selective membranes. The membranes were found to be more cost efficient, and easily accessible and fabricated and produced purer hydrogen gas. The different membranes were explored, and their different characteristics were explored, and a decision matrix showed that the polymeric membrane was 1.37 time better than microporous membrane and 1.54 times better than dense metal membrane.
ContributorsAgbo, Benjamin Udama (Co-author) / Buyinza, Allan (Co-author) / Deng, Shuaguang (Thesis director) / Taylor, David (Committee member) / Materials Science and Engineering Program (Contributor) / Chemical Engineering Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
132449-Thumbnail Image.png
Description
In Nepal, a viable solution for environmental management, food and water security is the production of biochar, a carbon material made of plants burned in low oxygen conditions. Currently, the biochar is manufactured into charcoal briquettes and sold on the market for energy usage, however this may not provide the

In Nepal, a viable solution for environmental management, food and water security is the production of biochar, a carbon material made of plants burned in low oxygen conditions. Currently, the biochar is manufactured into charcoal briquettes and sold on the market for energy usage, however this may not provide the best value for community members who make less than a dollar a day and sell the biochar for as little as 16 cents per kilogram. This thesis seeks to improve the price of biochar and help their livelihoods as well as explore innovative solutions. One way to improve biochar while addressing water security problems is to create activated carbon, which uses its heightened porosity to adsorb contaminants from water or air. Activated carbon is also worth 100x the price of biochar. This thesis evaluates the mass content of biochar produced in Nepal, comparing it to literature values, and performed gravimetric and thermogravimetric analysis, comparing it to Activated Charcoal. Analysis of the biochar system used in Nepal reveals that the byproduct of biochar, biofuels, is highly underutilized. The higher heating value of biochar is 17.95 MJ/kg, which is much lower than other charcoals which burn around 30 MJ/kg. Low volatile content, less than 5% in biochar, provides a smokeless briquette, which is favorable on the market, however low heating value and misutilizations of biofuels in the solution indicate that creating a briquette is not the best use for biochar. Ash content is really high in this biochar, averaging around 12% and it may be due to the feedstock, a composite between Mikania and Lantana, which have 5.23% and 10.77% ash content respectively. This does not necessarily indicate a poor quality biochar, since ash values can vary widely between charcoals. Producing activated charcoal from this biochar is a favored solution; it will increase the price of the biochar, provide water security solutions, and be an appropriate process for this biochar, where heating value and underutilization of biofuel byproducts pose a problem.
ContributorsCayer, Joelle Marie Caroline (Author) / Chhetri, Netra (Thesis director) / Henderson, Mark (Committee member) / Deng, Shuguang (Committee member) / Chemical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
133807-Thumbnail Image.png
Description
Microvillus Inclusion disease is a fatal disease found in the Navajo population caused by a single nucleotide polymorphism. It is characterized by intractable diarrhea and is often fatal early in life.1 The current method of diagnosis is sending duodenal biopsies for histopathological examination and confirmatory testing through genomic sequencing. The

Microvillus Inclusion disease is a fatal disease found in the Navajo population caused by a single nucleotide polymorphism. It is characterized by intractable diarrhea and is often fatal early in life.1 The current method of diagnosis is sending duodenal biopsies for histopathological examination and confirmatory testing through genomic sequencing. The purpose of this experiment was to create a more simple and cost-effective diagnostic method for detecting Microvillus Inclusion disease. Three methods were explored (RFLP2, ARMS3,4, and Tentacle Probes5,6) and two methods were tested to determine their ability and their efficiency in detecting the SNP that causes the disease.2 Tests using the RFLP2 method and synthetic DNA resulted in 9% false-positive rate and 11% false-negative rate in a blind trial for detecting both target (mutation present) and non-target (mutation absent) DNA when gel analyzing software was used to compare Rf values after gel electrophoresis. Using the ARMS method3, a nine-sample randomized test was run that ended up with 22% false-positive rate and 19% false-negative rate from a blind trial when using a gel analyzing software to determine presence of the SNP by band intensity. Disclaimer: No DNA from human patients was used in this study. Only synthetic DNA used.
ContributorsHelmbrecht, Hawley Elizabeth (Author) / Caplan, Michael (Thesis director) / Carpentieri, David (Committee member) / Dubois, Courtney (Committee member) / Chemical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
133821-Thumbnail Image.png
Description
Membrane proteins (MPs) are an important aspect of cell survival that ensure structural integrity, signaling, and transportation of molecules. Since 2015, over 450 MPs have been studied to find their functionalities and structure. Sufficient amounts of correctly folded MPs are needed to accurately study them through crystallography and other structural

Membrane proteins (MPs) are an important aspect of cell survival that ensure structural integrity, signaling, and transportation of molecules. Since 2015, over 450 MPs have been studied to find their functionalities and structure. Sufficient amounts of correctly folded MPs are needed to accurately study them through crystallography and other structural study methods. Use of recombinant technology is needed to overexpress MPs as natural abundance of MP is often too slow to provide the necessary amounts. However, an increase in toxicity and decrease in generation time deter the overexpression of MPs. The following report discusses two methods of enhancing overexpression in Escherchia coli, the use of T7 RNA polymerase (T7RNAP) and the reprogramming of chaperon pathways, that combats toxicity and promotes cell growth. Overall, both methods are proven to work effectively to overexpress MPs by regulating transcription rate of mRNA (T7RNAP) or folding and transporting of polypeptides to inner membrane (chaperon pathway). To further study the effectiveness of the two methods, they will need to be compared at the same conditions. In addition, a combination of two methods should also be studied to find out if the combination would have a great impact on the overexpression of the MPs.
ContributorsHan, Sue Jisue (Author) / Nannenga, Brent (Thesis director) / Green, Matthew (Committee member) / Chemical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
133720-Thumbnail Image.png
Description
A key component to American weddings is the wedding cake and the number of customs associated with it. The History, Evolution, and Development of Wedding Cakes is a creative project that hopes to answer why the wedding cake is such an iconic item and what it represents. A historical study

A key component to American weddings is the wedding cake and the number of customs associated with it. The History, Evolution, and Development of Wedding Cakes is a creative project that hopes to answer why the wedding cake is such an iconic item and what it represents. A historical study details the evolution from its origin to present day while a comparison of wedding cakes (or wedding cake analogs) from other cultures explores their role(s) across the globe. It was found that while little regard is given to the symbolism of the wedding cake today, its presence persists in some shape or form as it continues to evolve. Cultural variations were recreated to reflect personal interpretations of contemporary designs in addition to an original design of a contemporary-rustic American wedding cake.
ContributorsYung, Andra (Author) / Levinson, Simin (Thesis director) / Jacobs, Mark (Committee member) / Chemical Engineering Program (Contributor) / School of Nutrition and Health Promotion (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
133722-Thumbnail Image.png
Description
One of the primary bottlenecks to chemical production in biological organisms is the toxicity of the chemical. Overexpression of efflux pumps has been shown to increase tolerance to aromatic compounds such as styrene and styrene oxide. Tight control of pump expression is necessary to maximize titers and prevent excessive strain

One of the primary bottlenecks to chemical production in biological organisms is the toxicity of the chemical. Overexpression of efflux pumps has been shown to increase tolerance to aromatic compounds such as styrene and styrene oxide. Tight control of pump expression is necessary to maximize titers and prevent excessive strain on the cells. This study aimed to identify aromatic-sensitive native promoters and heterologous biosensors for construction of closed-loop control of efflux pump expression in E. coli. Using a promoter library constructed by Zaslaver et al., activation was measured through GFP output. Promoters were evaluated for their sensitivity to the addition of one of four aromatic compounds, their "leaking" of signal, and their induction threshold. Out of 43 targeted promoters, 4 promoters (cmr, mdtG, yahN, yajR) for styrene oxide, 2 promoters (mdtG, yahN) for styrene, 0 promoters for 2-phenylethanol, and 1 promoter for phenol (pheP) were identified as ideal control elements in aromatic bioproduction. In addition, a series of three biosensors (NahR, XylS, DmpR) known to be inducible by other aromatics were screened against styrene oxide, 2-phenylethanol, and phenol. The targeted application of these biosensors is aromatic-induced activation of linked efflux pumps. All three biosensors responded strongly in the presence of styrene oxide and 2-phenylethanol, with minor activation in the presence of phenol. Bioproduction of aromatics continues to gain traction in the biotechnology industry, and the continued discovery of aromatic-inducible elements will be essential to effective pathway control.
ContributorsXu, Jimmy (Author) / Nielsen, David (Thesis director) / Wang, Xuan (Committee member) / School of Life Sciences (Contributor) / Chemical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
133653-Thumbnail Image.png
Description
In industrial applications, rotary drums are poorly understood and preform suboptimally when used to process particulates. In order to better understand how these drums work, a statistical experiment was designed to measure the effects of the fill level and rotation rate on the final temperature of the particle bed. A

In industrial applications, rotary drums are poorly understood and preform suboptimally when used to process particulates. In order to better understand how these drums work, a statistical experiment was designed to measure the effects of the fill level and rotation rate on the final temperature of the particle bed. A steel rotary drum was set up to be headed by three external heat guns, simulating the conditions under which standard rotary drums are operated. By measuring the bed temperature at steady state, and recording the combination of factors in each run, a regression analysis was run to determine the factor's effects. Fill level was seen to have a small positive effect, rotation rate was seen to have a small negative effect, and the interaction of the two was shown to have a large positive effect. This led the team to conclude that the flow profile of the bed may be the most important factor in heat transfer, and that further research should be done to isolate and study the effect of the flow profile.
ContributorsBeairsto, Cole James (Author) / Emady, Heather (Thesis director) / Adepu, Manogna (Committee member) / Chemical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
133572-Thumbnail Image.png
Description
Separation of carbon dioxide and methane for the upgrade of natural gas through use of pressure swing adsorption could potentially save large amounts of energy from the current, costly process of cryogenic distillation and provides greater cost effectiveness for carbon dioxide capture, and provide larger product flowrates than membrane permeation

Separation of carbon dioxide and methane for the upgrade of natural gas through use of pressure swing adsorption could potentially save large amounts of energy from the current, costly process of cryogenic distillation and provides greater cost effectiveness for carbon dioxide capture, and provide larger product flowrates than membrane permeation separation. The purpose of this study is to analyze the effects of varying initial conditions of a MatLab simulation, courtesy of Mai Xu, a graduate student at ASU, designed to use Langmuir isotherms, mass transfer equations, and adsorbent and gas properties to simulate a pressure swing adsorption process with a mixture of methane and carbon dioxide gas feed. The effects that will be varied are the adsorption/desorption time, pressurization/depressurization time, adsorption feed composition, desorption purge composition, adsorption pressure, desorption pressure, adsorption flow rate, and desorption flow rate. The study found that the trends in methane purity and production generally follow the trends predicted by literature and relevant equations, with pressure boundaries being the largest impacting factor. In addition there was a markedly inverse correlation between purity of methane product and the productivity of the system. This trend was only violated in one instance, at very low vacuum pressure during desorption, which could indicate an area that requires further study. Overall, the main areas of improvement in pressure swing adsorption for this system would be improving the selectivity of adsorption of carbon dioxide over methane, which requires improvement and change of the adsorbent, and more extreme vacuum pressures during desorption, both of which will increase methane yield and reduce operating costs.
ContributorsCook, Alexander Charles (Author) / Deng, Shuguang (Thesis director) / Mu, Bin (Committee member) / Chemical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05