Matching Items (262)
Filtering by

Clear all filters

184843-Thumbnail Image.png
Description

Metal oxides are crucial materials that can be applied to sustainable processes for heat storage or oxygen pumping. In order to be able to apply metal oxides to industrial processes, an effective model of the metal oxide’s reduction thermodynamics is required. To do this, Wilson et al., (2023) developed a

Metal oxides are crucial materials that can be applied to sustainable processes for heat storage or oxygen pumping. In order to be able to apply metal oxides to industrial processes, an effective model of the metal oxide’s reduction thermodynamics is required. To do this, Wilson et al., (2023) developed a compound energy formulism (CEF) algorithm to form these models. The algorithm in its current form can effectively form model thermodynamics; however, the data set required for this model is extensive and large, leading to high costs of modeling a metal oxide. Furthermore, the algorithm faces further difficulties with uneven data densities within the set, leading to poorer fits for low density data. To assist in alleviating the cost associated with data collection, data-omitting strategies were performed to find unimportant points, or points that formed models that had good fits to the original model when removed. After conducting these tests, many points and trends were found to be crucial to keep within the data set, but due to uneven data density, no definitive conclusions could be made on how to reduce the algorithm’s data set. The tests gave evidence that points in high data density regions could be removed from the data set due to only the fact that there existed nearby points to provide essential information to closely interpolate/extrapolate the missing data. Although this project currently did not meet the goal of reducing the data set, preliminary findings of what points could be non-crucial to the data set were identified. Future testing with the proposed weighting methods will be conducted to determine what data can be safely removed from the set to form models that properly reflect the metal oxide’s properties.

ContributorsDeshpande, Amogh (Author) / Muhich, Christopher (Thesis director) / Rivera, Daniel (Committee member) / Barrett, The Honors College (Contributor) / Chemical Engineering Program (Contributor)
Created2023-05
Description

The purpose of this thesis was to understand the importance of supply chain visibility (SCV) and to provide an analysis of the technology available for achieving SCV. Historical events where companies lacked efficient SCV were assessed to understand how errors in the supply chain can have detrimental effects on a

The purpose of this thesis was to understand the importance of supply chain visibility (SCV) and to provide an analysis of the technology available for achieving SCV. Historical events where companies lacked efficient SCV were assessed to understand how errors in the supply chain can have detrimental effects on a company and their reputation. Environmental, social, and governance standards within the supply chain were defined along with the importance of meeting the legal and consumer expectations of a supply chain. There are many different organizations dedicated to helping companies meet ESG standards to achieve ethical, sustainable supply chains. Examples such as the Responsible Business Association and the Organization for Economic Co-Operation and Development were considered. A government solution to SCV, called the Freight Logistics Optimization Works Initiative, considered the importance of data sharing for large companies with complex supply chains, and this solution was assessed for understanding. Current companies and technologies available to achieve SCV were examined for understanding as to how the issue of SCV is currently addressed in the industry. A case study on the company Moses Lake Industries looked at how their complicated chemical manufacturing supply chain has adapted to achieve SCV. This included understanding supplier location, manufacturing processes, and risks. Future technologies that are currently being developed which could further benefit the supply chain industry were considered. Other future considerations, such as the movement of manufacturing out of high risk areas and the need for centralization of SCV solution, were also discussed.

ContributorsWhite, Lily (Author) / Bronowitz, Jason (Thesis director) / Grumbach, Elizabeth (Committee member) / Barrett, The Honors College (Contributor) / Department of Supply Chain Management (Contributor) / Chemical Engineering Program (Contributor)
Created2023-05